

Written by John Leung

Document version 1.1

12/7/2018

Sharp Memory LCD Shield

User Guide

Update

1) Add support for two new Memory LCD modules LS006B7DH03 (64*64) and

LS011B7DH03(160*68)

Contents at a Glance

• Chapter 1 Introduction 1

• Chapter 2 Setting up the hardware

 • Memory LCD 2

 • Select 5V v.s 3V LCD voltage 3

 • Application Processor - ESP32 WiFi/BLE SoC 4

 • Application Processor - Arduino M0 PRO 5

• Chapter 3 Setting up the development environment 6

 • If you are using Arduino M0 PRO 7

 • If you are using ESP32 9

• Chapter 4 Describing how hardware works 11

• Chapter 5 Describing how firmware works 12

• Chapter 6 Font Creation 17

• Chapter 7 Image Creation 26

• Chapter 8 An estimation on power consumption 30

• Appendix A Schematic diagram of Memory LCD Shield 37

 PCB layout of Memory LCD Shield 39

• Appendix B Schematic diagram of ESP32 Application Processor 40

 PCB layout of ESP32 Application Processor 41

1 | P a g e

Chapter 1 Introduction

Sharp's Memory LCD (https://www.sharpsma.com/products?sharpCategory=Memory%20LCD)

is a lightweight display with 1

thin and at the time same delivering a relat

microWatt power consumption

platforms has been built to facilitate testing and product development

time of writing, five Memory LCD models

LS044Q7DH01(4.4"), LS006B7DH03 (0.56"), and LS011B7DH03 (1.08")

tested with firmware designed for t

Introduction

(https://www.sharpsma.com/products?sharpCategory=Memory%20LCD)

is a lightweight display with 1-bit memory in every pixel allowing high

delivering a relatively high frame rate (20Hz max

ower consumption level. An evaluation kit compatible with

to facilitate testing and product development for the

Memory LCD models LS027B7DH01 (2.7"), LS032B7DD02 (3.2"),

, LS006B7DH03 (0.56"), and LS011B7DH03 (1.08")

designed for two Arduino boards - Arduino M0 PRO and ESP32

(https://www.sharpsma.com/products?sharpCategory=Memory%20LCD)

bit memory in every pixel allowing high-contrast, ultra-

ively high frame rate (20Hz max) at merely

An evaluation kit compatible with 3.3V Arduino

for the LCDs. At

(2.7"), LS032B7DD02 (3.2"),

, LS006B7DH03 (0.56"), and LS011B7DH03 (1.08") have been

Arduino M0 PRO and ESP32.

2 | P a g e

Chapter 2 Setting up the hardware

Memory LCD

Simply stack the shield on top of any 3.3V Arduino compatible board to start

development. Bonus features include a high precision shunt amplifier INA226 for

measuring power consumption on 100Ω ±0.1% shunt resistor. Illustration of the board

is shown below. Schematic and PCB layout of the shield can be found in Appendix A of

this document.

Stack Memory LCD Shield on top

of any 3.3V version Arduino-

compatible evaluation kit to

start development.

INA226

shunt amp

TPS60140 DC-

DC converting

3V to 5V

3 | P a g e

Select 5V v.s 3V LCD voltage

It is important to notice that there are two operation voltages for different Memory LCD

models, 5V and 3V. Table below summaries the electrical characteristics of different

models.

Model VDDA MIN. VDDA TYP. VDDA MAX.

LS027B7DH01 (2.7") 4.8V 5.0V 5.5V

LS032B7DD02 (3.2") 4.8V 5.0V 5.5V

LS044Q7DH01(4.4") 4.8V 5.0V 5.5V

LS006B7DH03 (0.56") 2.7V 3.0V 3.3V

LS011B7DH03 (1.08") 2.7V 3.0V 3.3V

Compatibility is enabled by a jumper resistor to select between 5V and 3.3V as the VDDA

(and VDD as well) supply. Extract below shows a part of the schematic. Resistor R10 is

not soldered by default. Every evaluation kit ex-factory was soldered with a 0 Ohm

resistor at R13 to source 5V output from TPS60140PWP DC-DC converter as the VDDA

(and VDD). If you need to use 3V Memory LCD, please swap R13 and R10 which mean to

unsolder R13 and use the same resistor at R10 to complete the bridge between 3.3V

supply from Arduino host board to VDDA (and VDD) of Memory LCD.

4 | P a g e

Application Processor - ESP32 WiFi/BLE SoC

Application processor (AP in short) is the microcontroller or System-on-Chip (SoC) to

draw every pixel on screen. We are doing the job with ESP32-WROOM-32 which is an

off-the-shelf Wifi and Bluetooth Low Energy (BLE) SoC. By "googling" the keyword

ESP32 there are myriad links and resources available. Official web site can be found at

https://www.espressif.com/en/products/hardware/modules. The first module on list

of the table is the model we have chosen.

There are many reasons to opt for this device including its popularity, open-source,

resourceful documentation, nicely supported SDK, low cost (~US$4), and most

importantly there is an ample SRAM of 520KB together with 4MB Flash miniaturized on

this 18x25mm PCB.

Gearing with 520KB SRAM is critical for our applications because a frame buffer is

implemented to hold graphical contents. There are three Memory LCD models from

resolution 320*240 (4.4") to 336*530 (3.2"). If we are storing full contents in SRAM for

1-bit pixel depth, the requirement is tabulated in table below. A divisor of 8 in

arithmetic is required because we are using 1-byte to hold 8 pixels in 1-bit color depth.

Memory LCD Resolution SRAM (byte)

LS027B7DH01 400*240 400*200/8 = 12,000

LS044Q7DH01 320*240 320*240/8 = 9,600

LS032B7DD02 336*536 336*536/8 = 22,512

LS006B7DH03 64*64 64*64/8 = 512

LS011B7DH03 160*68 160*68/8 =1,360

As indicated a SRAM as high as 22KB is required and this memory is satisfied with 520KB

SRAM of ESP32 SoC.

To fit an Arduino-UNO form factor, a PCB

was designed with peripheral components

including voltage regulator, USB-to-UART

transceiver chip (CH340C), and an

automatic binary file download circuitry

for kick-starting development. Schematic

and PCB layout of the ESP32 Application

Processor is shown in Appendix B of this

document.

5 | P a g e

Application Processor - Arduino M0 PRO

In addition to ESP32 we have also tested Arduino M0 PRO as the AP. This board has

been chosen because it is readily available and there is a 32KB SRAM which is more than

sufficient to support the frame buffer requirement explained in last section.

Getting started guide can be found under this hyperlink.

https://www.arduino.cc/en/Guide/ArduinoM0Pro

6 | P a g e

Chapter 3 Setting up the development environment

Download and install Arduino IDE version 1.8.1 or later.

Locate the library folder. This information is available from File→Preferences. In my case it

is under C:\Users\John\Documents\Arduino.

By this time you should have obtained a copy of the Memory LCD driver from us. Extract

the library and manually copy the folders to C:\Users\John\Documents\Arduino. Your

path may be different with your user name. There are two libraries required, one for

Memory LCD and the second for INA226 as shown below with highlights.

Restart Arduino IDE.

7 | P a g e

If you are using Arduino M0 PRO

M0 PRO is natively supported in Arduino IDE so the only step is to Select Arduino M0 or

Arduino M0 Pro (Programming Port) from Tools→Board.

If Arduino M0/M0 Pro is not available, you will have to install it from Boards Manager.

Connect USB port of Arduino M0 (or debug port of Arduino M0 PRO) to your PC.

From Device Manager you will see an enumerated port for M0/M0 PRO like screen shot

below.

8 | P a g e

Make sure it is the same port number you have selected under Tools→Port for binary

code download.

Memory LCD shield is compatible with five LCD models. The "switch" to control is

located at the header file with #define as below. Select one of them for your Memory

LCD model. You may open this .h file with your favorite text editing program. A

Windows Notepad will be sufficient. My personal preference is Notepad++. Don't

forget to save the file.

Finally click Sketch→Upload.

After download successful you will see a message from the console window

9 | P a g e

If you are using ESP32

Install ESP32 Arduino Core from https://github.com/espressif/arduino-esp32.

The installation procedure is available in full details from the download link above.

ESP32 AP board is using a USB-UART bridge CH340C to link up with a PC. Download its

driver from http://www.wch.cn/download/CH341SER_ZIP.html and get it installed.

After download and installation, connect the USB port to

PC and make sure there is a new COM PORT enumerated

in Device Manager. In my case it is COM55. It could be

different in your environment.

Unplug it from PC and stack Memory LCD Shield on it.

Install Memory LCD to the Omron dual contact connector onboard → close the zip lock.

Reconnect USB cable.

10 | P a g e

Restart Arduino IDE. Browse through Arduino Examples from

File→Examples→MemoryLCD→HelloWorld.

There are four examples at time of writing this

document.

Make sure you have uncomment the LCD model

from MemoryLCD.h header file for what you are

using.

For ESP32 AP, from Tools→Boards Manager, select ESP32 Dev Module. Please also make

sure parameters are selected according to screen shot below.

11 | P a g e

The last step is to click Upload

From Arduino's message window please make program compile OK with a

uploading message.

Now if you are lucky, some texts will be visible. Free feel to click on any of the keys to

browse through the demo.

Upload from Sketch→Upload

message window please make program compile OK with a

Now if you are lucky, some texts will be visible. Free feel to click on any of the keys to

browse through the demo.

message window please make program compile OK with a Done

Now if you are lucky, some texts will be visible. Free feel to click on any of the keys to

12 | P a g e

Chapter 4 Describing how hardware works

Full schematics of Memory LCD Shield and ESP32 Application Processor are printed on

the Appendix section of this document. A simplified block diagram showing different

functional blocks is summarized below. ESP32 is shown in this block diagram for

illustration purpose.

Connections for Arduino M0 PRO is

similar with different pinout

definitions declared in MemoryLCD.h

controlled by directives in compile

time.

TPS60140

3.3V→5V

DC-DC

converter

3.3V or lower 5V

MOSI

SCK

SCS

DISP

EXTCOMIN

Memory LCD

100Ω

INA226

ESP32

IO18

IO23

IO5

IO26 IO25

13 | P a g e

Describing how firmware works

Two data update modes are available, namely the 1-line mode and multiple-lines mode.

Timing diagrams are available from LCD's datasheet with extracts shown below.

In the firmware these update modes are implemented by two local functions:

Frame buffer is declared as a double array to store all pixels of the LCD as below:

static void GFXDisplayUpdateLine(uint16_t line, uint8_t *buf);

static void GFXDisplayUpdateBlock(uint16_t start_line, uint16_t end_line, uint8_t *buf);

uint8_t frameBuffer[GFX_FB_CANVAS_H][GFX_FB_CANVAS_W];
//GFX_FB_CANVAS_H = Vertical resolution of the LCD
//GFX_FB_CANVAS_W = Horizontal resolution of the LCD /8

14 | P a g e

With a slightly better camera and a macro lens, we were able to visualize every pixel on

a 4.4" Memory LCD as illustrated below . The outline in red color is a label for the first 8

pixels.

On system startup, all bytes in frameBuffer[][] array are initialized to 0xFF meaning all

pixels set to white color. This is the first element frameBuffer[0][0] to store color

content of the first 8 pixels in horizontal direction.

Now, suppose we need to set the odd pixels to black for the first 8 pixels (1,3,5,7), we

may call the API function GFXDisplayPutPixel(x,y,color) with code snippet show

below:

What's happening in the for-loop above is that, every time GFXDisplayPutPixel() is

called, say GFXDisplayPutPixel(0,0,BLACK); it is the bit position at (0,0) set BLACK

with the rest bit positions unchanged. To describe it in full details, memory content of

the frame buffer array tabulated against each function call is shown on next page.

for (int x=0; x<8; x++)
{
 if(x%2)
 GFXDisplayPutPixel(x,0,WHITE);
 else
 GFXDisplayPutPixel(x,0,BLACK);
}

element @ frameBuffer[0][0]

15 | P a g e

void GFXDisplayPutPixel(uint16_t x, uint16_t y, COLOR color)
{
 GFXDisplayPutPixel_FB(x, y, color);
 GFXDisplayUpdateLine(y+1, (uint8_t *)&frameBuffer[y]);
}

Function call Frame buffer array for 4.4" LCD as an example.
An underline at the bit-position shows the pixel to write.

GFXDisplayPutPixel(0,0,BLACK) frameBuffer[0,0] = 0b0111 1111;
frameBuffer[n,0] = 0b1111 1111; n=1-39

GFXDisplayPutPixel(1,0,WHITE) frameBuffer[0,0] = 0b0111 1111;
frameBuffer[n,0] = 0b1111 1111; n=1-39

GFXDisplayPutPixel(2,0,BLACK) frameBuffer[0,0] = 0b0101 1111;
frameBuffer[n,0] = 0b1111 1111; n=1-39

GFXDisplayPutPixel(3,0,WHITE) frameBuffer[0,0] = 0b0101 1111;
frameBuffer[n,0] = 0b1111 1111; n=1-39

GFXDisplayPutPixel(4,0,BLACK) frameBuffer[0,0] = 0b0101 0111;
frameBuffer[n,0] = 0b1111 1111; n=1-39

GFXDisplayPutPixel(5,0,WHITE) frameBuffer[0,0] = 0b0101 0111;
frameBuffer[n,0] = 0b1111 1111; n=1-39

GFXDisplayPutPixel(6,0,BLACK) frameBuffer[0,0] = 0b0101 0101;
frameBuffer[n,0] = 0b1111 1111; n=1-39

GFXDisplayPutPixel(7,0,WHITE) frameBuffer[0,0] = 0b0101 0101;
frameBuffer[n,0] = 0b1111 1111; n=1-39

In essence, what the function GFXDisplayPutPixel(x,y,color) doing is to set /clear the

required bit position at (x,y) in frame buffer while keeping the rest bit positions

unchanged. After bit set/clear is finished, the whole line will be updated by the local

function GFXDisplayUpdateLine() for the complete horizontal line.

Interested readers may take a look at the source code for GFXDisplayPutPixel() listed

below:

After running this code snippet the LCD is displaying something this:

16 | P a g e

To extend this concept to 2D, we may simply update a rectangular area with

GFXDisplayUpdateBlock() to span it over the required top and bottom horizontal

margin.

This implementation leads to a faster frame rate. Graphical interface illustrated in the

Arduino Sketch BloodPressure_GU.ino shows a counting blood pressure reading at

the left with a stood still icon of an up-arrow at the right. Feel free to open this sketch

and change the delay constant in loop() from delay(50) to delay(1), or removing it to

get an impression on how fast it can go.

Another unique features of Memory LCD is that partial update is allowed as long as it

spans a complete horizontal region. This means only the block occupying the font

height of the SYS. pressure below is changed, whereas the top and bottom regions

need not to be updated.

A coin has two sides though. At the expense of a high frame rate with higher flexibility in

GUI design, the down side of this approach is that we will need more expensive

microcontroller with more SRAM memory to accommodate the frame buffer.

With better GUI planning there is a compromise. Consider an example below.

If we knew the top portion is not to be

changed, we may copy graphical data from

flash during system startup for the top region

which will not be changed in the whole course

of device usage. The lower part for numbers

and date-time that need continuous update

may be allocated a smaller frame buffer just

enough for the area. This design approach

leads to a wider choice of microcontrollers

with fewer SRAM memory.

Digits updated at

the left while

keeping the icon

stood still at the

right.

Icon here stood-still

Region below is not updated

when it is only the SYS.

pressure data spanning the

font height of digits for

120 get changed.

17 | P a g e

Chapter 6 Font creation

In this section we are going to introduce a commercial bitmap font creator tool

(BitFontCreator) developed by a Beijing-based company called Iseatech Software

(http://www.iseasoft.com/company/about.html). BitFontCreator converts any font from PC to

C files for embedded projects.

There are three versions available namely BitFontCreator Latin, Pro, and Grayscale. The

writer is using the Grayscale version but Latin version for 1-bpp font will be good

enough for Memory LCD in Black/White color. Demo version is available from Iseasoft

with a strikethrough on any character created. This limitation will be removed from

formal version.

Procedures

Launch BFC, select Monochome, 1-bpp as the Font Creation Option. Click OK.

There are various encoding options available for Unicode, BIG5, and ASCII of course. If

Unicode is selected, it will be possible to create C array from 16-bit characters for

embedded projects. For now select 8 bit ASCII + ISO8859.

Select the font to use from your PC.

Click OK.

18 | P a g e

A Character Table is updated to show the default character range to use. To save flash

memory it is possible to customize the range say, from ASCII code 0x0020 to 0x007E for

ASCII characters from <space> to <~>.

Click Font → Edit Characters Table (or Ctrl + T). Click Disable All and

followed by Enable Range. Fill in 0x0020 for the First character and 0x007E for the Last

character. Click OK.

Now the Character Table will be updated with the range you have selected. A smaller

character range just enough for application will create a smaller C array to save precious

Flash space for microcontroller.

19 | P a g e

Click on Data Format button from the left panel, make sure the options are the same as

screen shot below because the firmware has been designed for these options for data

alignment.

Click OK to continue.

Now you may choose to save the project for future use. Using the default filename is OK

here. Click Save. The format in *.foc is a proprietary format recognized only by

BitFontCreator Suite.

It is possible to application few modifications such as margin trimming, adding or

removing some pixels, etc. To suit our application better the top margin has been

trimmed by 3 pixels with feature from Font → Change Font Height.

This feature will not shrink the font

but only trim the top white space.

20 | P a g e

Finally, export a C file from drop down menu under

 File → Export → General C file (*.C).

Save the C file to any location, preferably at the same location of the Arduino project

folder. It is under \BloodPressure_GUI folder in our case.

Similar procedures can be performed with other fonts with project folder look like this:

Only the C files and

Arduino .ino file are useful

for programming. Those *.foc files serve as references only.

21 | P a g e

Supporting Unicode

A similar procedure can be used to support Unicode

(http://www.unicode.org/standard/standard.html).

Procedures in this section describe how BitFontCreator is used to convert simple

greeting messages in Chinese and Japanese to C files for the Arduino Sketches

BloodPressure_GUI.ino and HelloWorld.ino.

Under File→New Font→Import An Existing System Font, select Monochrome, 1bpp

with Encoding set 16 bit UNICODE. Click OK.

Pick any of the system Font with Unicode support, in our case the SimHei of Bold 26

selected.

Click OK.

It may take a while for your PC to import the map into BitFontCreator. After successful

import the whole character table will be available. Browse it through the end you will

see some characters in Japanese and Chinese.

22 | P a g e

Although it is possible to include the whole character range from 0x0020 to 0xFFE5,

another consideration is that flash memory of microcontroller will be eaten up by the

static font data if we are doing so. It is more practical to include only the characters we

need to save our precious microcontroller flash area.

Bring up the Font→Edit Characters Table.

Click Disable All followed by Enable Range. Input the range to use, in our case only

few characters are required for greeting in Japanese and Chinese. They are Unicode

0x3053, 0x3061, 0x306B, 0x306F, 0x3093, 0x4F60, & 0x5970.

After repeating the selection procedure for individual characters the Characters Table

will be filled up with just what we need.

23 | P a g e

Bring up the Bitmap Data Format window to make sure settings as below. Click OK.

Now, click General C file (*.c) from

24 | P a g e

File→Export→General C file (*.c)...

Save the file, given the name as SimHei_35h.c in our case.

To use the font created we need to "let Arduino know" that we have such data in our

system. Now declare its existence in source code. Snippet shown below.

Similarly for fontArial_Rounded_MT_Bold55h and fontConsolas24h the pattern for

declaration is the same.

25 | P a g e

After announcing their existence the last step is to call the relevant functions to print the

texts. Its usage can be found in the source code BloodPressure_GUI.ino and

HelloWorld.ino from the example folder.

26 | P a g e

Chapter 7 Image creation

In this section we are going to show you a free utility to create image and font source

files for embedded projects, namely LCD Image Converter. This tool's home page:

http://www.riuson.com/lcd-image-converter.

From time to time we need to display some icons such as battery level, an arrow for

navigation, etc.

LCD Image Converter is an open source program that can be downloaded for free

whereas BitFontCreator described in last chapter is a commercial program at an

affordable cost. The purpose of using different programs to convert graphical assets

(fonts and bitmaps) is to show flexibility.

There is no restriction on which tool to use as long as we are drawing pixels on LCD

correctly from arrays, no matter they have been converted by a commercial program or

shareware.

Here we need to convert 3 icons to C arrays for our embedded project. They can be

found in the project folder of BloodPressure_GUI.ino

Launch lcd-image-converter.exe.

Start working with File → Open. Browse to the image to convert.

27 | P a g e

From Options→Conversion, make sure the Main Scan Direction and Line Scan

Direction have been set to Top to Bottom and Forward, respectively.

Under Image tab, select Split to rows checkbox with Block Size set to 8 bit, and Byte

order set to Little-Endian.

You may click the Show Preview button to preview the C array. Click OK and Yes to

save change.

28 | P a g e

Now click Convert under File→Convert... (Ctrl+P) to export the *.c file to the root

directory of your project.

By following the same procedures two files arrowUp_89x48.c and pulseRate_icon.c

were created. Screen shot of the sketch project folder is shown below for reference.

Please notice that the C file arrowDown_89x48.c was converted with the up arrow image

flipped in LCD Image Converter with keyword arrowUp_89x48 replaced by

arrowDown_89x48 manually in a text editor.

29 | P a g e

Launch Arduino IDE and open the sketch BloodPressure_GUI.ino, from the IDE all C

files are show in different tabs.

There is one last step. Complete the C files created with a new header #include

<tImage.h> for everyone of them.

Now in the sketch file, let the project know we are using those external data by

declaration with extern meaning that we are declaring the data somewhere outside.

We may now display icons by calling the function GFXDisplayPutImage().

30 | P a g e

Chapter 8 An estimation on power consumption

This section attempts to analyze the power consumption of a Memory LCD when it's

content is maintained and updated. Although such data has been stated in each of the

datasheets of various LCD models, a full understanding on when and how power is spent

would make sense for future low power design. Block diagram below shows the

functional blocks for measurement.

Photography on next page shows the set up in action.

Memory LCD

100Ω

INA226

An off-board

instrumentation amplifier

AD620 set to a gain of x200

Tektronix TDS 1012B DSO

31 | P a g e

Run this sketch from File→Examples→MemoryLCD→Energy. Press SW3 to start

measurement.

AD620 instrumentation

amplifier set to a

gain of x200

Press SW3 key to update the LCD

with results of power consumption

displayed on LCD

Output from AD620 connected to

CH1 of TDS1012B (outside the

photo) for correlation.

32 | P a g e

Energy measurement is performed by a function void ina226_measure(void) with

listing shown below.

The variable busVoltage_V returns the operation voltage of the Memory LCD. This value

is measured from the output of TPS60140 DC-DC which got tethered to VDD & VDDA of

Memory LCD via R13 (0 Ω). Current is measured from a shunt resistor of R5

(100Ω±0.1%) in the return path of the LCD to ground. An extract of the schematic is

shown below:

It has been found that the time to make measurement is critical. The power

consumption during display update(dynamic) to that of display maintain(static) is

different.

To tackle this problem a function dedicated for power measurement during display

update is created.

Listing on next page shows the function

uint32_t GFXDisplayTestPattern(uint8_t pattern, void (*pfcn)(void)).

void ina226_measure(void)
{
 busVoltage_V = (float)ina.readBusVoltage(); //in V
 shuntVoltage_uV = (float)ina.readShuntVoltage()*1000000.0; //in uV
}

33 | P a g e

There are two arguments required to run this function:

1. uint8_t pattern : defines the horizontal bit pattern in 8-bit width so that the

whole horizontal line spanning across the LCD will repeat in this pattern for the vertical

direction.

2. void (*pfcn)(void) : is a pointer to function to execute when horizontal line is

updated at half the height of the LCD. This is controlled by the snippet below.

The time taken to update vertical strip pattern is returned in milliseconds.

uint32_t GFXDisplayTestPattern(uint8_t pattern, void (*pfcn)(void))
{
 uint32_t timing = 0;
#if defined (ARDUINO)
 uint32_t sMillis = millis();
#else
 #error Need to define the function to return millisec for other platforms
#endif
 hal_spi_start_transaction();
 hal_delayUs(3); //SCS setup time of tsSCS (refer to datasheet for timing details)

 for(uint16_t line=1; line<=DISP_VER_RESOLUTION; line++)
 {
 #ifdef LS032B7DD02

 hal_spi_write_byte(uint8_t((line<<6)|0x01));
 hal_spi_write_byte((uint8_t)(line>>2));
 #else
 hal_spi_write_byte(0x01);
 hal_spi_write_byte((uint8_t)line
 #endif

 uint32_t writePeriod = DISP_HOR_RESOLUTION>>3; //divide by 8 for 1-bit bpp

 while(writePeriod--){
 hal_spi_write_byte(pattern);
 }

 if(line==DISP_VER_RESOLUTION/2)
 {
 if(pfcn!=NULL) {
 pfcn();
 }
 }
 }
 hal_spi_write_byte(0x00); //dummy byte
 hal_spi_write_byte(0x00); //dummy byte
 hal_spi_end_transaction();

#if defined (ARDUINO)
 timing = millis()-sMillis;
#else
 #error Need to define the function to return millisec for other platforms
#endif

 return timing;
}

...
 if(line==DISP_VER_RESOLUTION/2)
 {
 if(pfcn!=NULL) {
 pfcn();
 }
 }
 }
...

34 | P a g e

When switch SW3 is pressed, the code will check for a simple software delay of 10ms to

debounce the key and print a short message via Serial Monitor as "Energy measurement

when display is updated ::". Then the function GFXDisplayTestPattern(0xF0,

&ina226_measure) will be executed with the time taken returned with variable updateTime.

Current is calculated by simple Ohm's Law:

Power is calculated not from a direct equation P=V*I. A time factor has been included to

take account of the fact that only a finite time interval is required to display the vertical

strip pattern.

For full listing readers may check the source code Energy.ino Arduino Sketch.

The accuracy was verified with a DSO (Tektronix TDS1012B). An instrumentation

amplifier AD620 set to a gain of x200 was used to boost the shunt voltage so that it could

be measured by TDS1012B. Data comparing measurements made by the external DSO

to that of INA226 shunt amplifier onboard of the Memory LCD Shield are shown below.

Don't forget the signal fed to CH1 has been amplified by x200 gain factor.

Therefore, the true value measured by DSO = 3.76V/200 = 0.0188V = 18.8mV.

This agree quite well with INA226's result.

Time taken to update the vertical strip pattern was around 58ms as measured by the

DSO. This result matches very well with the parameter returned by software. But hold!

How come there was a dip in the middle? This was caused by INA226's ADC sampling on

VIN- and VIN+. Occurring in the middle because we have programmed the measurement

to be taken when the line number was equal to DISP_VER_RESOLUTION/2 which is the

half vertical height of the display.

Putting together the LCD voltage, shunt current, and the time taken to update,

Powerupdate = 5.01V * 183.15uA * 58/1000 = 53.22uW.

shuntCurrent_uA = shuntVoltage_uV/100; //with a shunt resistor 100Ω

power_uW = shuntCurrent_uA*busVoltage_V*updateTime/1000; //update time in ms

35 | P a g e

That's it when Memory LCD is being updated. But what about when it is not? When an

image is maintained, which happens 90% of the time for modern GUI, a Memory LCD

drains significant power only when the EXTCOMIN pin goes from low to high in its

perpetual external COM inversion signal at 1Hz.

DSO trace below shows the same trace at CH1 with CH2 measuring EXTCOMIN.

Again, don't forget CH1 was amplified at x200 gain.

A closer look at CH1 reveals a pulse of 2.50ms peaks at around 4/200 V (20mV) when

EXTCOMIN goes from low-to-high. For the rest of 997.5ms in a 1 second interval the

shunt voltage was not measurable even with the help of a x200 pre-amplifier!

EXTCOMIN @ 1Hz

A short pulse triggered by

each low-high EXTCOMIN

transition. Don't forget this

has been pre-amplified with a

x200 gain.

36 | P a g e

This is equivalent to say that, power consumption when the Memory LCD is maintaining

an image like this:

showing the vertical strip we have updated when SW3 was pressed, plus all readings

covering part of the strip pattern is calculated as

Powermaintain = 5V * (20mV/100) * 2.5ms/2/1000 = 0.00125mW = 1.25uW.

Conclusion

Memory LCD is a high quality monochrome LCD delivering high frame rate, high

contrast LCD, with partial update feature and the at same time consuming as small as

few microWatt when display content is maintained.

37 | P a g e

Appendix A Schematic diagram of Memory LCD Shield

38 | P a g e

39 | P a g e

PCB layout of Memory LCD Shield

Top layer

Bottom layer

40 | P a g e

Appendix B Schematic diagram of ESP32 Application Processor

41 | P a g e

PCB layout of ESP32 Application Processor

Top layer

Bottom layer

