—ovott) Z00OL 1
a6 lacs#ett) Z000L8TE0s

g (owE0ZE) LoHOOFRIS]

I Tovzrooy) WOHO LaLzos

Written by John Leung

Document version 1.1

12/7/2018

Update

1) Add support for two new Memory LCD modules LSO06B7DH03 (64*64) and
LS011B7DH03(160*68)

Contents at a Glance

e Chapter1
e Chapter 2
e Chapter 3
e Chapter 4
e Chapter 5
e Chapter6
e Chapter7
e Chapter 8

e Appendix A

e Appendix B

Introduction
Setting up the hardware
e Memory LCD
e Select 5V v.s 3V LCD voltage
e Application Processor - ESP32 WiFi/BLE SoC
e Application Processor - Arduino MO PRO
Setting up the development environment
e Ifyou are using Arduino MO PRO
e Ifyou are using ESP32
Describing how hardware works
Describing how firmware works
Font Creation
Image Creation
An estimation on power consumption

Schematic diagram of Memory LCD Shield

PCB layout of Memory LCD Shield

Schematic diagram of ESP32 Application Processor
PCB layout of ESP32 Application Processor

37
39
40
41

Chapter 1 Introduction

Sharp's Memory LCD (https://www.sharpsma.com/products?sharpCategory=Memory%20LCD)
is a lightweight display with 1-bit memory in every pixel allowing high-contrast, ultra-
thin and at the time same delivering a relatively high frame rate (20Hz max) at merely
microWatt power consumption level. An evaluation kit compatible with 3.3V Arduino
platforms has been built to facilitate testing and product development for the LCDs. At

time of writing, five Memory LCD models LS027B7DHO01 (2.7"), LS032B7DD02 (3.2"),
LS044Q7DH01(4.4"), LSO06B7DHO03 (0.56"), and LS011B7DHO03 (1.08") have been

tested with firmware designed for two Arduino boards - Arduino MO PRO and ESP32.

LS032870002 (336%538) 346"

rKim.
reading in norma!
ular exercise an

Izt;)ur prescription-
ome to my clinic on this
at 3:00pm.

1|Page

Chapter 2 Setting up the hardware
Memory LCD

Simply stack the shield on top of any 3.3V Arduino compatible board to start
development. Bonus features include a high precision shunt amplifier INA226 for
measuring power consumption on 100} +0.1% shunt resistor. [llustration of the board
is shown below. Schematic and PCB layout of the shield can be found in Appendix A of
this document.

8 m

Ey
i
-
2

_Zwee leasw

TPS60140 DC-
DC converting
3V to 5V

Stack Memory LCD Shield on top
of any 3.3V version Arduino-
compatible evaluation kit to
start development.

2|Page

Select 5V v.s 3V LCD voltage

[t is important to notice that there are two operation voltages for different Memory LCD
models, 5V and 3V. Table below summaries the electrical characteristics of different
models.

Model VDDA MIN. VDDA TYP. VDDA MAX.
LS027B7DHO01 (2.7") 4.8V 5.0V 5.5V
LS032B7DD02 (3.2") 4.8V 5.0V 5.5V
LS044Q7DHO01(4.4") 4.8V 5.0V 5.5V
LS006B7DHO03 (0.56") 2.7V 3.0V 3.3V
LS011B7DHO03 (1.08") 2.7V 3.0V 3.3V

Compatibility is enabled by a jumper resistor to select between 5V and 3.3V as the VDDA
(and VDD as well) supply. Extract below shows a part of the schematic. Resistor R10 is
not soldered by default. Every evaluation kit ex-factory was soldered with a 0 Ohm
resistor at R13 to source 5V output from TPS60140PWP DC-DC converter as the VDDA
(and VDD). If you need to use 3V Memory LCD, please swap R13 and R10 which mean to
unsolder R13 and use the same resistor at R10 to complete the bridge/between 3.3V
supply from Arduino host board to VDDA (and VDD) of Memory LCD.

11_FPC Omron XE2M-10

EXTMODE
VDDA
DISP
EXTCOMIN
SCS

VSSA
VS§s
SI

Header 6
VBUS TP7 TP8

ool
i
VING
i R3 GND =
mnder Appendix e .||

100R 01% yxThioDE

i YBUS R P2
NL T RerbR T TF3
—
l R7 OR T
fain

i

Cc2

3
1uF 18V 1uF 16V
C6 l— R10 NL | R13 OR
= L

KDGN

x XD
= 4u7
6.3V, X7R Soldering optio X
U4 Memory LCD operation voltage : __? % +
5vo \ I
4N out = by a 1 3
] N 1 l L ¥ .
- AMER - o IO Pur source B
c17 ====6.3v; x7R| 536K 0 B
1000 aur salder 00hm to R10
b SR L P LBO L LOBAT WARN e
:14_I__b Cl+ c2+];—l—me Rzp Divider for 3V output
a2 ko o FE T2 M
= EN
TUIILY] poan Gap [LR192 A b 1
GNDGND GRD
TPS60140PWP

TP10

.|||_

Gl

z

D

3|Page

Application Processor - ESP32 WiFi/BLE SoC

Application processor (AP in short) is the microcontroller or System-on-Chip (SoC) to
draw every pixel on screen. We are doing the job with ESP32-WROOM-32 which is an
off-the-shelf Wifi and Bluetooth Low Energy (BLE) SoC. By "googling" the keyword
ESP32 there are myriad links and resources available. Official web site can be found at
https://www.espressif.com/en/products/hardware/modules. The first module on list
of the table is the model we have chosen.

Chip Dimensions " Flash PSRAM Development
Pins Antenna

Module Description Embedded {mm) (MB) (MB) Board

ESP32-WROOM-32 contains the

ESP32 SoC, flash memory, high-

precision discrete components, E5p3a.

and a PCB antenna which 18x25.5x2.8 38 4 N/A PCB antenna ESP32-DevKitC
i DOWDQ6

provides outstanding RF

performance in space-

constrained applications.

There are many reasons to opt for this device including its popularity, open-source,
resourceful documentation, nicely supported SDK, low cost (~US$4), and most
importantly there is an ample SRAM of 520KB together with 4MB Flash miniaturized on
this 18x25mm PCB.

Gearing with 520KB SRAM is critical for our applications because a frame buffer is
implemented to hold graphical contents. There are three Memory LCD models from
resolution 320*%240 (4.4") to 336*530 (3.2"). If we are storing full contents in SRAM for
1-bit pixel depth, the requirement is tabulated in table below. A divisor of 8 in
arithmetic is required because we are using 1-byte to hold 8 pixels in 1-bit color depth.

Memory LCD Resolution SRAM (byte)
LS027B7DHO01 400*240 400*200/8 = 12,000
LS044Q7DHO01 320*%240 320*240/8 = 9,600
LS032B7DD02 336*536 336*536/8 = 22,512
LS006B7DHO03 64*64 64*64/8 =512
LS011B7DHO03 160*68 160*68/8 =1,360

As indicated a SRAM as high as 22KB is required and this memory is satisfied with 520KB
SRAM of ESP32 SoC.

To fit an Arduino-UNO form factor, a PCB
was designed with peripheral components
including voltage regulator, USB-to-UART
transceiver chip (CH340C), and an
automatic binary file download circuitry
for kick-starting development. Schematic
and PCB layout of the ESP32 Application
Processor is shown in Appendix B of this
document.

4|Page

Application Processor - Arduino M0 PRO

In addition to ESP32 we have also tested Arduino M0 PRO as the AP. This board has
been chosen because it is readily available and there is a 32KB SRAM which is more than
sufficient to support the frame buffer requirement explained in last section.

Getting started guide can be found under this hyperlink.

https://www.arduino.cc/en/Guide/ArduinoMePro

5|Page

Chapter 3 Setting up the development environment
Download and install Arduino IDE version 1.8.1 or later.

Locate the library folder. This information is available from File—>Preferences. In my case it
is under C:\Users\John\Documents\Arduino.

x

Settings I Networkl

Sketchbook location:

|C: Wsers\John'\Documents'Arduino Browse |

Editor language: ISystem Default LI (requires restart of Arduine)
Editor font size: I 14
Interface scale: ¥ Automatic I 100 33 % (requires restart of Arduino)

Show verbose output during: [~ compilation [upload

Compiler warnings: INc-ne hd I

[Display line numbers

I~ Enable Code Folding

¥ Verify code after upload

[~ Use external editor

[w Check for updates on startup

W Update sketch files to new extension on save (.pde -3 .ino)

¥ sawe when verifying or uploading

By this time you should have obtained a copy of the Memory LCD driver from us. Extract
the library and manually copy the folders to C:\Users\John\Documents\Arduino. Your
path may be different with your user name. There are two libraries required, one for
Memory LCD and the second for INA226 as shown below with highlights.

Documents library

libraries Arrang
Name Date modified
| Adafruit_INA219-master 1172018 11:54 AM
| Adafruit_NeoPixel 10/25/2017 6:04 AM
| ArduinoDueHiFi-master 8/18/2016 10:43 AM
l Arduino-INA226-master 117 1:55 AM
| ArduinoJson 4172018 11:15 AM
| AutoAnalogAudio-master 12/5/2016 &:04 AM
| Blynk 10/25/2017 6:03 AM
J BlynkESPE266_Lib 4/9/2017 8:23FPM
, DirectlO-master 12/8/2016 1:07 FPM

l MemaoryLCD

| Ra8a76_Lite 3/14/2018 6:22 PM

Restart Arduino IDE.

6|Page

If you are using Arduino M0 PRO

MO PRO is natively supported in Arduino IDE so the only step is to Select Arduino MO or
Arduino MO Pro (Programming Port) from Tools-Board.

If Arduino M0/MO Pro is not available, you will have to install it from Boards Manager.

88 HelloWorld | Arduino 1.8.1

File Edit Sketch |Tools Help
Auto Format Cri+T
Archive Sketch
HelloWorld Fix Encoding & Reload
1 [#tinclude 7 Serial Monitor Ctrl+Shift+4
THREMEE T erial Piotter Ctl+shift+L

o ShnE T WiFi101 Firmware Updater

4 const int Blynk: Check for updates

5 const int Blynk: Example Builder

& Blynk: Run USB script

&

T extern c A

g extern con| POrt COMSS® oS hoGe

e Get Board Info Teensyduino,

9 lextern con

. . . Teensy 3.6
10 extern con Programmer: “AVRISP mi Teensy 3.5
11 extern con Burn Bootloader Teensy 3.2/ 3.1
12 Teensy 3.0
13 uintS_t SW3_demo_page = 0, Teensy LC
14 bool demo_done = false; Teensy++2.0
15 Teensy 2.0

Ard SAMD (32-bits ARM Cortex-M0+) Board!
16 ///@note Font: SiaHei 55 ZAGTHIT inwmdc| oo ERTE SRR
N . N ArduinofGenuino Zero {Programming Port)
17 const uintlé_t hello_japanese[]={0x3053, Ox Arduino/Genuino Zera (Native USE Port)
18 ///@note Font: SinHei 35 YT in unicoede 18 Arduino/Gentine MKR 1000
19 const uintl6_t hello_chines=[] ={0x4F60, Ox Arduino MKRZero
Arduino MKRFox 1200
1 wvoid setupl) { Adafruit Circuit Playground Express
2 /f put your setup code here, to run once: Stk R B o S B
i Arduino M0 Pro (Native USE Port)
3 hal bsp_init();

GFXDisplayPowerOn() ;
pinMode (SW3, INPUT_PULLUP);
pinMode (SW2, INPUT_PULLUP) ;

& Arduino MO

Arduino Tian

Arduino AYR Boards
Arduino Yan

Connect USB port of Arduino MO (or debug port of Arduino M0 PRO) to your PC.

From Device Manager you will see an enumerated port for MO/MO PRO like screen shot

below.

7|Page

g=: Device Manager

File Action View Help
e&=mEIHG % 15

ItiumDesigner 1
Computer
Disk drives

B

=]
L., Display adapters
L2 DVD/CD-ROM drives
Human Interface Devices
g IDE ATA/ATAPI controllers
E¥ Jungo Connectivity
ZZ Keyboards
ﬂ Mice and other pointing devices
J Monitors
EF Network adapters
c¥ Realtek PCI GBE Family Controller
Realtek PCIe GBE Family Controller
VirtualBox Host-Only Ethernet Adapter
VirtualBox Host-Only Ethernet Adapter #2
| VMware Virtual Ethernet Adapter for Mnetl
¥y VMware Virtual Ethernet Adapter for VMnet3

Printer Port (LPT1
[} Processors

H -3 Sound, video and game controllers
b System devices

£ i Universal Serial Bus controllers

-
el

Make sure it is the same port number you have selected under Tools-»Port for binary
code download.

Memory LCD shield is compatible with five LCD models. The "switch" to control is
located at the header file with #define as below. Select one of them for your Memory
LCD model. You may open this .h file with your favorite text editing program. A
Windows Notepad will be sufficient. My personal preference is Notepad++. Don't
forget to save the file.

MemoryLCDuh X

ine LS844Q7DHe1

Finally click Sketch-Upload.

@@ HelloWorld | Arduino 1.8.1

File Edit | Sketch Tools Help
Verify/Compile Ctrl+R
Upload Ctrl+U
Upload Using Programmer Ctrl+Shift+J SimHei 35h.c catc
Export compiled Binary ~ Ctrl+Alt+5 =

HellowW

cons

Show Sketch Folder Ctrl+
Include Library »

_ Add File...
ext ed_MT Bold3Th;

2 extern const BFC_FONT fontSimHei_35h;

cons

o o

) extern const unsigned char homeless[];

[Ts}

L 1 I . [I)

After download successful you will see a message from the console window

i3 wo1d loopfh) i

Maximum is

8|Page

If you are using ESP32
Install ESP32 Arduino Core from https://github.com/espressif/arduino-esp32.
The installation procedure is available in full details from the download link above.

ESP32 AP board is using a USB-UART bridge CH340C to link up with a PC. Download its
driver from http://www.wch.cn/download/CH341SER_ZIP.html and get it installed.

CH341SER.ZIP

EfEE =S Ef&tial

CH340G , CH340T, CH340C, CH3 3.4 2016-09-27 158KB
40E, CH340B , CH341A , CH341

T, CH341B, CH341C, CH341U

CH340/CH341USB#E[IWINDOWSIKZHZER , RS DLLESEM IR ERFERN ST EMRA |, 32532/641
Windows 10/8.1/8/7/VISTA/XP , SERVER 2016/2012/2008/2003 , 2000/ME/S8 , IETREREIFESIAE , =5

USBEE3EHI9ELS.

After download and installation, connect the USB port to

PC and make sure there is a new COM PORT enumerated | ™= Acfn Yex feb
. . L E= M B H]8RS
in Device Manager. In my case it is COM55. It could be [= smege
[+-1%& Computer
+].— Disk drives
‘u'i Display adapters
£} DVD/CD-ROM drives
t%’ Human Interface Devices
@ [DE ATA/ATAPI controllers
E¥ Jungo Connectivity
&% Keyboards
B Mice and other pointing devices
A Monitors
=&Y Metwork adapters
L¥ Realtek PCI GBE Family Controller
wF Realtek PCle GBE Family Controller
ﬂ‘ VirtualBox Host-Only Ethernet Adapter
I‘-?‘ VirtualBox Host-Only Ethernet Adapter #2
YMware Virtual Ethernet Adapter for VMnetl
VMware Virtual Ethernet Adapter for VMnet8
=15 Ports (COM &LPT)
T Communications Port {com1)

different in your environment.

Unplug it from PC and stack Memory LCD Shield on it.

"tk Processors

[
% Sound
[
[

T game controllers

Video S
- 1Ml System devices
- i Universal Serial Bus controllers

Install Memory LCD to the Omron dual contact connector onboard — close the zip lock.
Reconnect USB cable.

9|Page

Restart Arduino IDE. Browse through Arduino Examples from
File»Examples-MemoryLCD-HelloWorld.

HelloWorld | Arduino 1.8.1

Fie Edt Sketch Took Help

New Ctrl+
. (] . Open... Ctrl+0
There are four examples at time of writing this o cent + e Pmggees erRane BrEREnH
Sketchbook (3
document. .
Close Cirl-+ Ethernet 4
Save Cirl4+s Firmata 4
Save As... Clrl+Shift+S LiquidCrystal L2
sSD »
Page Setup Cirl+Shift+P Stepper »
Print Ctrl+p Tt »
TFT »
Make sure you have uncomment the LCD model s s | :
Quit cirl+Q
from MemoryLCD.h header file for what you are G .
- 1 DNSServer »
USIng- 1 EEPROM »
13 ESP32 »
14 #include “Memoryll —EoPa2BLE Arduing b
- ESPmDNS »
i HTTPClient »
16 #if defined (ESP3Z preferences &
17 const int SW3 = 3E| spfecnzn D
18 const int SW2Z = 34 SD_MMC »
nst int BUZZ = ¢ SimpleBLE »
1if defined (_va SPIFFS ’
nst int SW3 = 6 CPGAE L
WiFi »
st Int SN 5 »

mst int BUZZ = 7
i rlF Examples from Custom Libraries

Adafruit INA219
Adafruit NeoPixel

tern const BFC_F| arduine INAZ2E-master 1d56h;

L5644Q7DHe1 onst BFC_F ArduinoDueHiF-master
const tInag Arduinolson
ern Blyrk.

const tInag

///@note Font: [

mst uintlf_t

//f@note Font: f

TIFEETUTEstar

>
>
»
>
>
»
¥
»
13
>
>

BloodPressure_GLI
Energy
FirstPixel

const uintlf_t

ugfk-arduine-master »
INCOMPATIBLE
7

Please also make

For ESP32 AP, from Tools-»Boards Manager, select ESP32 Dev Module.
sure parameters are selected according to screen shot below.

HelloWorld | Arduino 1.8.1 i

File Edit Sketch | Tools Help

Auto Format Cirl+T

Archive Sketch

Fix Encoding & Reload [cat_400x2
. Serial Manitor Cirl+3hift+M B
i Serial Platter Ctrl+Shift+L
q WiFi101 Firmware Updater

4 Blynk: Check for updates
5 Blynk: Example Builder
Blynk: Run USB script

T Board: "ESP ev Module™ » &

g Flash Mode: "DIO" y Wiflnfo

. Flash Size: M (32Mb)" y Arduno

i Flash Frequency: "80MHz" » DRI
10 Digistump Oak

Upload Speed: "115200" » ot e

1 Intel Curie (32-bit) Boards
1 Caore Debug Level: one”] sl Sl e
19 e - Arduino/Genuino 101
Lla ort:
13 Get Board Info
14 #4 o -
14 #include Programmer: "AVRISP mkII™ »
15 Burn Bootloader SparkFun ESP32 Thing

u-blooe NIMNA-W 10 series (ESP32)

on

#if defined (ESP32)

10|Page

The last step is to click Upload from Sketch-Upload

&@ HelloWorld | Arduino 1.8.1
File Edit | Sketch Tools Help

seribiompil e
Helld Eplead-ds AR —t—et s 0las24hc | SimHei_!

Export compiled Binary ~ Ctrl+AIt+5

Show Sketch Folder Crl+K
Include Library »
Add File...

wora e

FEI- T

o

From Arduino's message window please make program compile OK with a Done
uploading message.

Now if you are lucky, some texts will be visible. Free feel to click on any of the keys to
browse through the demo.

LS03287DDAZ (336x536) 3.16”

11|Page

Chapter 4 Describing how hardware works

Full schematics of Memory LCD Shield and ESP32 Application Processor are printed on
the Appendix section of this document. A simplified block diagram showing different
functional blocks is summarized below. ESP32 is shown in this block diagram for

illustration purpose.

INA226

Memory LCD

J_i‘l 1000

TPS60140

3.3V or lower 3.3Vs5V

DC-DC
converter

Connections for Arduino M@ PRO 1is
similar with different pinout
definitions declared in MemoryLCD.h
controlled by directives in compile
time.

12|Page

wh

1 oo

]

I T I S R R Y

BL L0 L0 L0 L LA L L L R R R RY ORI ORI R

o m

MOSI SCs
SCK DISP|

EXTCOMIN

I023 IO18 1IO5 I026 I025

#d=fine GFX DISPLAY
#define GFX DISPLAY EXTCOMIN
#define GFX DISPLAY DISP

fdefine GFX
#define USE

#elzse if defined (ESP32)

#define
#define G
#define
#define

#define T

F#endif
F#endif

wowomow |

5
6

[SR RN}

m

4

ESP32
1wote pin number definition, hardware dependent
f defined (ARDUINO)
include "Ard: h"
defined (_VARIANT ARDUINC ZERC)

w
=

Describing how firmware works

Two data update modes are available, namely the 1-line mode and multiple-lines mode.
Timing diagrams are available from LCD's datasheet with extracts shown below.

6-5-1 Data update mode (1 line)
Updates data of only one specified line. (MO="H", M2="L")

oo wsosi|

L rses] [uses
! T VeSS T TS (X X e, D Uy DA TAGT caie)
stLKH i | |

AT
¢

B3 e S CLALY
14 H

Modeselectperiod | Gate line address select period | Date write period
(@ddetSokDhT) ' @B @a0ey i Bda

| i
“.] Date fransfer pariod

MQ: Mode flag. Set for “H”. Data update mode (Memory internal data update)
When “L”, display mode (maintain memory internal data).

M1: Frame inversion flag.
When “H”, outputs VCOM="H", and when “L”, outputs VCOM="L".
When EXTMODE="H", it can be “H” or “L".

M2: All clear flag.
Refer to 6-5-4) All Clear Mode to execute clear.

DUMMY DATA: Dummy data. It can be “H” or “L” (“L” is recommended.)

6-5-2 Data Update Mode (Multiple Lines)
Updates arbitrary multiple lines data. (MO="H", M2="L")

WSCEH

T sscs ": I 1 i

!) |

s A 0 €0 0 O T €00 € €D €5 €5 €D € e) D D D A AW G € o) S) €) ALY € €) & & l
51—+ Sl SC LKL S C LH | '\: h\
SCLK ; W
| 7), |
Made sslect pariod Gate line addres= select period | D ate wiite period D ate transter period Il
(BodcHBk DT (8dg A0k (Bok{ Dummy+E di{ ad dress = 15) I
GList line G12nd line il

wSCSH) _ | BaSCSL

” theC &

oA BT ot carey

i \
4 i
Gate line address = elect period i D ate wiite period D ate transfer period i
(Bek(D ummy)+eckl addres 5)=16ck) (A00ck) (18ek)
T At line mth ling
GLr Tyt | GLinjth |

In the firmware these update modes are implemented by two local functions:

static void GFXDisplayUpdatelLine(uintl6_t line, uint8_t *buf);

static void GFXDisplayUpdateBlock(uintl16_t start_line, uintl6_t end_line, uint8_t *buf);

Frame buffer is declared as a double array to store all pixels of the LCD as below:

uint8 t frameBuffer[GFX_FB_CANVAS_H][GFX_FB_CANVAS W];
//GFX_FB_CANVAS_H = Vertical resolution of the LCD
//GFX_FB_CANVAS W = Horizontal resolution of the LCD /8

13|Page

With a slightly better camera and a macro lens, we were able to visualize every pixel on
a 4.4" Memory LCD as illustrated below . The outline in red color is a label for the first 8
pixels.

element @ frameBuffer[0][0]

On system startup, all bytes in frameBuffer[][] array are initialized to OxFF meaning all
pixels set to white color. This is the first element frameBuffer[@][@] to store color
content of the first 8 pixels in horizontal direction.

Now, suppose we need to set the odd pixels to black for the first 8 pixels (1,3,5,7), we
may call the API function GFXDisplayPutPixel(x,y,color) with code snippet show
below:

for (int x=0; Xx<8; X++)

if(x%2)
GFXDisplayPutPixel(x,@,WHITE);
else
GFXDisplayPutPixel(x,@,BLACK);

What's happening in the for-loop above is that, every time GFXDisplayPutPixel() is
called, say GFXDisplayPutPixel(®@,0,BLACK); it is the bit position at (0,0) set BLACK
with the rest bit positions unchanged. To describe it in full details, memory content of
the frame buffer array tabulated against each function call is shown on next page.

14|Page

Function call

Frame buffer array for 4.4" LCD as an example.
An underline at the bit-position shows the pixel to write.

GFXDisplayPutPixel(®@,0,BLACK)

frameBuffer[0,0] = 0bo111 1111;
frameBuffer[n,0] = 0b1111 1111; n=1-39

GFXDisplayPutPixel(1,0,WHITE)

frameBuffer[0,0] = 0bo111 1111;
frameBuffer[n,0] = 0b1111 1111; n=1-39

GFXDisplayPutPixel(2,0,BLACK)

frameBuffer[0,0] = 0b0101 1111,
frameBuffer[n,0] = 0b1111 1111; n=1-39

GFXDisplayPutPixel(3,0,WHITE)

frameBuffer[0,0] = 0bo10l 1111;
frameBuffer[n,0] = 0b1111 1111; n=1-39

GFXDisplayPutPixel(4,0,BLACK)

frameBuffer[0,0] = 0b0101 0111,
frameBuffer[n,0] = 0b1111 1111; n=1-39

GFXDisplayPutPixel(5,0,WHITE)

frameBuffer[0,0] = 0b0101 0111,
frameBuffer[n,0] = 0b1111 1111; n=1-39

GFXDisplayPutPixel(6,0,BLACK)

frameBuffer[0,0] = 0bo101 0101,
frameBuffer[n,0] = 0b1111 1111; n=1-39

GFXDisplayPutPixel(7,0,WHITE)

frameBuffer[0,0] = 0b0101 0101,
frameBuffer[n,0] = 0b1111 1111; n=1-39

In essence, what the function GFXDisplayPutPixel(x,y,color) doing is to set /clear the
required bit position at (x,y) in frame buffer while keeping the rest bit positions
unchanged. After bit set/clear is finished, the whole line will be updated by the local

function GFXDisplayUpdatelLine() for the complete horizontal line.

Interested readers may take a look at the source code for GFXDisplayPutPixel() listed

below:

void GFXDisplayPutPixel(uintl6_t x, uintl6_t y, COLOR color)

{

GFXDisplayPutPixel FB(x, y, color);
GFXDisplayUpdateLine(y+1, (uint8_t *)&frameBuffer[y]);

}

After running this code snippet the LCD is displaying something this:

15|Page

To extend this concept to 2D, we may simply update a rectangular area with
GFXDisplayUpdateBlock() to span it over the required top and bottom horizontal
margin.

This implementation leads to a faster frame rate. Graphical interface illustrated in the
Arduino Sketch BloodPressure_GU.ino shows a counting blood pressure reading at
the left with a stood still icon of an up-arrow at the right. Feel free to open this sketch
and change the delay constant in loop() from delay(50) to delay(1l), or removing itto
get an impression on how fast it can go.

Another unique features of Memory LCD is that partial update is allowed as long as it
spans a complete horizontal region. This means only the block occupying the font
height of the SYS. pressure below is changed, whereas the top and bottom regions
need not to be updated.

Icon here stood-still

Digits updated at
the left while
keeping the icon
stood still at the
right.

Region below is not updated
when it is only the SYS.
pressure data spanning the
font height of digits for
120 get changed.

A coin has two sides though. At the expense of a high frame rate with higher flexibility in
GUI design, the down side of this approach is that we will need more expensive
microcontroller with more SRAM memory to accommodate the frame buffer.

With better GUI planning there is a compromise. Consider an example below.

If we knew the top portion is not to be . v

changed, we may copy graphical data from Menu
flash during system startup for the top region
which will not be changed in the whole course

of device usage. The lower part for numbers AB D u 1 23
and date-time that need continuous update u
may be allocated a smaller frame buffer just

enough for the area. This design approach
leads to a wider choice of microcontrollers

13:00 23-06-2018

with fewer SRAM memory.

16|Page

Chapter 6 Font creation

In this section we are going to introduce a commercial bitmap font creator tool
(BitFontCreator) developed by a Beijing-based company called Iseatech Software
(http://www.iseasoft.com/company/about.html). BitFontCreator converts any font from PC to
C files for embedded projects.

There are three versions available namely BitFontCreator Latin, Pro, and Grayscale. The
writer is using the Grayscale version but Latin version for 1-bpp font will be good
enough for Memory LCD in Black/White color. Demo version is available from Iseasoft
with a strikethrough on any character created. This limitation will be removed from
formal version.

Procedures
Launch BFC, select Monochome, 1-bpp as the Font Creation Option. Click OK.

There are various encoding options available for Unicode, BIG5, and ASCII of course. If
Unicode is selected, it will be possible to create C array from 16-bit characters for
embedded projects. For now select 8 bit ASCII + ISO8859.

Untitled - BitFontCreator Grayscale
File Edit Font Options Help

E e =]
Character Editor | Characters Table
------ —
OO &2 Type of fort to create oK |
(ST Monochrome, 1bpp
Artialiased. 2 bpp
Artialiased, 4 bpp ﬂl
Lo IR v
B oA S
r~ Encoding
[z 16bit UNICODE B/16bit BIG_5
» i & Bhit ASCIl + 1508859 " B/16 bit GEK
& 8/16bit SHIFT_JIS " 8/16 bit Hangul
Select the font to use from your PC. 21
Click OK. Font: Fortt style: Size:
Consolas | Reqular I
Century Schoolbook~] R TESlE - |
entury Schoo! ook~] e Cancel |
Chiller Bold
CityBlueprint | |Bold Halic
Colonna MT
Comic Sans MS
CommercialPiBT
& ol il BT rSample————— | [Hecis
Complex [~ Stikeout
p— AaBbYyZz _
I Undeine
Constantia
‘Cooper Script:
COPPERPLATE GO »| | Westem =l
This is an OpenType fort. This same font will be used on both
your printer and your screen.

17|Page

A Character Table is updated to show the default character range to use. To save flash
memory it is possible to customize the range say, from ASCII code 0x0020 to 0x007E for
ASCII characters from <space> to <~>.

|| Characters Table

0020 0021 0022 0022 0024 0025 0026 0027 0028 0025 002A 0028 002C 002D O002E OO02F 0020 | 0031 0032 0023 | 0024 0035 00238 | 0037 0038 d
L # $ % & ' (Y * + , - . /f @1 2 3 45 6 7 8

0023 003A 0028 002C 002D 002E O003F 0040 - 0042 0042 0044 0045 0048 0047 0048 0042 004A 004B 004C 004D OO04E 004F 0050 0051

g : ; < = > @ @ E B ¢C D EF 6 H I 3 KL MNOTFPQ

0052 0052 0054 OO55 0056 0057 0058 0059 005A OO5B OOSC 005D OOSE OOSF | 0060 0061 0062 | 0062 0064 0085 | 0066 0067 | 0068 | 0069 O006A

R T U Vv W XY 2 [v1 ~ _ " a b c d e f g h 1 3

006B 00BC O00EC OOGE OOBF 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 OO7A O007B | 007C 0070 O0O7E | 007F OO0AD | 00A1 | 00AZ 0D0A2

k'1'm n o p gqgr s t uvw xvy z { | } =~ it £

00A4 0DAS O00AE O0O0AT 0DAE 00AS 0DAA O00AB 00AC 0DAD O0AE O00OAF 00BO OOE1 00B2 00B2 O00B4 | 00BS 0OOBE O00B7 00BE2 0O0B%? 00BA | 00BE O00BC

' - - .
H ¥ | § O 28 & A - ® e £ =2 3 [TRRE IR Lt ey oK

00BD | QOBE | O0BF O0OCO 00C1 00C2 0O0C2 | 00C4 | QOCE OQOCE O0OCY 00CE 0O0CP® | 00CA | QOCE 0QOCC 00CD OQOCE OOCF | 00DO | 0OD1 0QOD2 00OD2 0004 ODODE

- - - - - a - - - " = = = - -~ - - - -

% A ¢ A A A A A A £ ¢C E E E E I I I I PN OO O O

00D€ 00D7 00ODE 0OD® O00DA QODB 00ODC 00ODD OQODE OODF OOEO O0OE1 OOE2 OOE2 00E4 OOES OOEE | 00E7 OOE2 O0OES | 00EA OOEE |00EC | 00ED O00EE
0 x ¢ U U U U Y P R a4 a &4 a a &8 & ¢ & e @& @& 1 1 1
00EF | 00OF0 O0OF1 OOF2 O0OF2 00F4 OOF5 O0OFE O0OF7 OOF8 O00OFS 0OFA OOFB O0OFC | 0OFD OOFE O0OFF
i 8 h 0 & & 0 & + ¢ U a 0 0y p ¥

=

Click Font - Edit Characters Table (or Ctrl + T). Click Disable All and
followed by Enable Range. Fill in 0x0020 for the First character and 0x007E for the Last
character. Click OK.

Uy (W XY [Z|[|N]T]™]_

e|f|lg|h|i|j|k|1l|m|n]|o

u | v | ¥
t

First: uleDzD |L|
I T Cancel | Y

AEAEANE
¢c|E|E|E|E|I | |11

L= =
H e S R E
»

L=}

L
b
)

Now the Character Table will be updated with the range you have selected. A smaller
character range just enough for application will create a smaller C array to save precious
Flash space for microcontroller.

Characters Table
0020 | 0021 | D022 | D023 | D024 | 0025 | 0026 | D027 | 0028 | 0029 | 002A | 002B | 002C | 002D | DOZE | OO2F | 0030 | 0031 | 0032 | D032 | D034 | 0035 |«
n 1
! # %t % & () * + , - . / @ 1 2 3 4 5

0036 | 0037 | 0038 | 0039 | 003A | 003B | 003C | 003D | D03E | 003F | 0040 - 0042 | 00432 0044 0045 0046 | 0047 | 0048 0042 0044 004B
6 7 8 9 K < =]/> 2 @ B C D E F G H I 13| K
004C | 004D | D04E | O04F | 0050 | 0051 | OD52 | 0053 | 0054 | 0055 | 0056 | 0057 | OD58 | 0052 | 005A | OOSB | 0O5C | 005D | ODSE | DOSF | 0060 | 0061
L M N o/ P Q R S T U V W X Y Z]] & a
0062 | 0063 | D0G4 | 0065 | 006G | O06Y | 00S8 | 0069 | D06A | 006B | O0BC | 006D | DDEE | OOSF | OD7O | OOF1 | OO72 | O0Y3 | 0074 | DO7S | D076 | 0O7VF
b ¢ d e f g h i/ j k/'1 m n o p q r s t u v 8w

0078 | 0079 | 007A | O0O7B | OO7C | 007D | DOTE

x y z { | } ~

18|Page

Click on Data Format button from the left panel, make sure the options are the same as
screen shot below because the firmware has been designed for these options for data

alignment.

Click oK to continue.

Character Bitmap Data Refresh |

/* character ="A""/
" Pure data unsigned char Data0041]]= {
% Detail info f—
hexcode: 0041
width x height: 13x 24
' C Language size: 48 bytes
= ASM 00, 00,
<00,
[T Invert bits

|

x4
r— Bit Order
012 3 456 701 237 " BglEi
[| O ¥ Little Endian
[1| C]
Scan based
% Row
£ Column
—Scan prefemed ——
% Row
£ Column
[1|]
@ (28 oapt
@ = 0x00 € = 0x1 0 =0x04 " Yes
£ Mo
Example: 1 bit per pixel (1 bpp)
= Bhits 1Bbits 32 bits OK |
™ Invert bits when exporting Cancel I

Now you may choose to save the project for future use. Using the default filename is OK
here. Click Save. The format in *foc is a proprietary format recognized only by

BitFontCreator Suite.

It is possible to application few modifications such as margin trimming, adding or
removing some pixels, etc. To suit our application better the top margin has been
trimmed by 3 pixels with feature from Font - Change Font Height.

File Edit Font Options Help

Consola s24h - BitFontCreator Grayscale 4.5

J‘l.:lrlgr: Font Height... C i SE -t

Change Fonk Width.,. L R —

Change Font Ascent. .. TR
Resize Font...

Change to Fixed-Width Font
Change ta Variable-WWidth Font

Remove Blank Columns

Center, &ll Charackers Horizantally

Mirror All Characters 3
Invert All Characters

Edit Characters Table...
Font Information. ..

Cirl+T

This feature will not shrink the font
but only trim the top white space.

19|Page

o
Fort Height 24 pixels
% Reduce Fort Height ™ Increase Fort Height
Clip top row 3 = Add top row 0 =
Clip bottom row 0 = Add bottom row 0 =
Hep | Cancel | ok |

Finally, export a C file from drop down menu under

File » Export - General C file (*.C).

Consolas24h - BitFontCreator Grayscale 4.5

File Edit Font Options Help

New Font e 5@_;‘|E = ﬂ:ﬁ|
Open Font... Ctrl+0 —
Save Font Cirl+s h:24) - 0041 <A> Characters Tat

Save Font As... 0020 | 0021

T |

Configure Data Format... Ctrl+G General Binary file (*.bin)... 0036 | D037
Microchip C file (*.c)...
1 Consolas24h) .D . A) 6 7
Microchip Binary file (*.bin)...
2 Cr\Users\,. . \BFC\21{$.35h) p
i o)d|BitFontCretaor Fro 2.0 Format |004C | 004D
3 Arial_Rounded_MT_Bold37h e (5.0
4Bradiey_Hand_ITC34hAA4 ASM fle (=.28m) .. L M
Exit Binary file (*.dat) ... 0082 | 0083
H b
[] Windows Font Resource file (*.fmt)... c
S EEEEE idouss -
Windows Bitmap Font file (*.fon)... 0078 | D079

.=.... Windows Bitmap files of all chars(*.bmp)

] | | | Xy
|| ||

Save the C file to any location, preferably at the same location of the Arduino project
folder. It is under \BloodPressure_GUI folder in our case.

x4
Save in:I | BloodPressure_GUI j (€] 3 i o

No items match your search,

File name: |Consoladeh Save

Save as type: IGenelaI C File ".c) j Cancel |
A

Similar procedures can be performed with other fonts with project folder look like this:

B BloodPressure_GUI P] 4 |
@\ jv‘ ~ Documents ~ Arduina - libraries ~ MemaryLCD ~ examples ~ EloodPressure_GUI + @3 [search Boocpressure_out \!«_ﬂ‘—‘
Organize v #F Open Sherewith v Emal Bun New folder = -l @

't Favorites i
X Dacuments library srangeby: Folder
B Desktop BloodPressure_GUT

& Downloads

5 Name ~ Date modified T
i RecentPlaces L=

i Google Drive

% Dropbox
| arrowDonn_89x48 5/11/2018 4:05PM € source File
Libraries
"aj o @ [arrowlp_89x48 6/11/2018 2:45PM Bitmap image
| Document
J Mosic . armowlip_89x48 6/11/2018 3:49 PM € Source File
I Pictures (& batteries 5/11/2018 3:04PM Bitmap mage
B videos (& battery_46x26 6/11/2018 3:08PM Bitmap image
| battery_s6x25 6/11/2018 3:49PM € Source File
1% Computer €3 Blosdpressure_GUI 6/14/2018 3:56 PM Aarduino file

&, LocalDisk (c:)
(a Local Disk (D2)
(o Local Disk (F:)

age 5PM Bitmap image

€ Network || 1oT_message 6/13/2018 12:46PM € Source File
(2] pulseRate_icon 6/7/2018 6:28 PM Bitmap image

| pulserate_icon 6/11/2018 3:49 PM C Source File

Only the C files and
Arduino .ino file are useful
for programming. Those *.foc files serve as references only.

20|Page

Supporting Unicode

A similar procedure can be used to support Unicode
(http://www.unicode.org/standard/standard.html).

Procedures in this section describe how BitFontCreator is used to convert simple
greeting messages in Chinese and Japanese to C files for the Arduino Sketches
BloodPressure_GULino and HelloWorld.ino.

Under File»New Font-Import An Existing System Font, select Monochrome, 1bpp
with Encoding set 16 bit UNICODE. Click OK.

File Edit Font Options Help
New Font MNew Font From Scratch...
Ctrl+0 Import An Existing System Font Ctrl+I

g Ak =

Open Font...

Say e Fonk ChHH-S Import Font Resource.. . Ctrl+R
Save Fonk &s...
= F
Export 3
Configure Data Format. .. Chrl+G 1 O &
= +
1 C:\Users\,.. \HelloWorld\2{#.35h R
2 Arial_Rounded_MT_Bold55h m o2
3 C:\Users\,..\Consolas24h
-‘“ v I W=
4 Arial_Rounded_MT_Bold37h =
Exit
Frnm
|
Type of font to create

Monochrome, 1 bpp

Antialiased, 2 bpp |
Antigliased, 4 bpp e

 Encodini
% 16 bit UNICODE " 8/16bit BIG_5
| " Bbit ASCIl + 1508859 8/16bit GBK
" 8/16bit SHIFT_JIS £ 8/16bit Hangul

|
Pick any of the system Font with Unicode support, in our case the SimHei of Bold 26

selected. Font 2|
Fort style: Size:
Click OK. = il . & Lo |
c— e 24 Cancel |
SimSun Bold Oblique 28
I 36
SimSun—ExtB g
ZmallFantr =zl f72 =
nip ITC
STENCIL [ETLE Bffects
IStylus BT [~ Strikeout
SuperFranch AaB be [Undedine

21 BdCn0ul BT I

wie721 BdCul BT Script:
wis721 Blk BT ~| I‘-'\"estem vl

This font style is imitated for the display. The closest matching
style will be used for printing.

It may take a while for your PC to import the map into BitFontCreator. After successful
import the whole character table will be available. Browse it through the end you will
see some characters in Japanese and Chinese.

21|Page

T wm L) I&ll B

303E 2041 2042 20432 2044 2046

[—_ —

B H Y3 D

3051 052 3053 2054 3055 3056 3057

L R [

lj‘ lj‘ _ “4reC) ersb | afoe | arse | aren | are1 | aFe2

s e B fﬁ] =& R OB

.5] O \C | 4FBD | 4FBE | 4FBF | 4F70 | 4FT1 | 4F72 | 4F73
; o)
£ 15 18 TRl i e
‘D | 4FTE | 4FTF | 4F80 | 4F81

5728 57X

T B 7 0T 1 0 b & 4

5739 573A 5738 573C 573D 573E 57aF 5

i 15 47 2 31 R 3 8

4Cc 574D 5T4E T4F

B 4 2 WY HRER AR 4

Although it is possible to include the whole character range from 0x0020 to OxFFES5,
another consideration is that flash memory of microcontroller will be eaten up by the
static font data if we are doing so. It is more practical to include only the characters we
need to save our precious microcontroller flash area.

Bring up the Font-Edit Characters Table.

o Untitled - BitFontCreator Grayscale 4.5

0 " File Edit Font Options Help
Change Font Height... Ctrl+H z S| a 5@|E Ak
Change Font Width, ..]!

Change Font Ascent... TEART DL S

Resize Font...

Change to Fixed-Width Font
Chiange ba Yariable-Width Font

Remove Blank Columns

Center Al Characters Horizontally:

Mirror All Characters 3
Invert All Characters

Edit Characters Table... Cirl+T

moties

Click Disable All followed by Enable Range. Input the range to use, in our case only
few characters are required for greeting in Japanese and Chinese. They are Unicode

0x3053, Ox3061, Ox306B, Ox306F, Ox3093, Ox4F60, & Ox5970.

E|II|I|J|I\|I|III|II

x

]
last: Oc[308B Cancel | }
1

A1 e

e el b B I

After repeating the selection procedure for individual characters the Characters Table
will be filled up with just what we need.

22|Page

[E 244 35h - BitFontCreator Grayscale 4.5

File Edit Font Options

Help

~lojx|

[y = I-N

B & caz @ B R

"I

L <

Character Editor (w:37 “h:35) - 3053 <. >

L=

Character Btmap Data Refresh

" Pure data
& Detail info

¥ C Language
 ASM

™ Invert bits

Data Format... |
Copy |
Save As |

For Help, press F1

/* character ='C."%/
unsigned char Data3053[]= {
-

hexcode: 3053

width x height: 37x 35

size: 175 bytes

Co00, (D0, (00, (00, (00,
00, (00, (00, (00, (00,
00, (D0, (00, (00, (D0,
00, (D0, (00, (00, (00,
Co00, (D0, (00, (00, (00,
Co00, (00, (00, (00, (D0,
D00, Be0C, bCO, (D7, (00,
CoeD0, BcFC, DeFF, G0, B0},
D00, BcFC, DFF, Q01 B},
00, OcED, DeFF, (0D, B0,
00, (D0, (00, (00, (D0,
00, (D0, (00, (00, (00,
Co00, (D0, (00, (00, (00,
Co00, (00, (00, (00, (D0,
Co00, (D0, (00, (00, (00,
Co00, (D0, (00, (00, (00,
00, (D0, (00, (00, (00,
00, (D0, (00, (00, (0,

[

Characters Table

5 L3 A

4F80

.
R

g

Edt Table... | Help

H
I

Bpp: 1 [Encoding: Unicode |Monospaced font: (w:37 *h:35) Z

Bring up the Bitmap Data Format window to make sure settings as below. Click OK.

E{}35h - BitFontCreator Grayscale 4.5

File Edt Font Options Help
O-& |8 @ A sz @ 4B 5|6 A S 0|
Character Editor (w:37 “h:35)- 3053 <Z > Characters Table
3061 306B 206F 23093 4F80 5970
7 = 5 ARE
1§ | &7
L R L Bitmap Data Format x|
@ T o= B Crder
M = 0123456 701237 IR s
[1|] & Little Endian
Grid Zoom [1|]
L l T rScanbased —
* Row
" Column
Character Bitmap Data Refresh
/* character ="Z."*/ = e
" Pure data unsigned char Data3053[J= { S el
% Detail info B ' Row
hexcode: 3053 ~
width x height: 37 x 35 Column
C Language size: 175 bytes
I Q N[5l
 ASM [Data packed
€ = 0x00 =001 @=0x04 " Yes
I Invert bits
* No
Deta Format 000, 00 (<D, D00, 00, Bemple 25 pex o {1 bpo)
(0. Be0C. BeCO. (07, Be00.
000, 0FC, OeFF, 01, <00, s i i oK |
Ll 00, BeFC, eFF, D, 3e00, onE ®HE e
000, B<ED, OcFF, (0D, 000, ™ Invert bits when exporting
Save As 00D, (00, (00, 000, B00, s |
00, (00, (00, (00, (00,

For Help, press F1

00, G0, (00, 000, (00,
00, Coell0, e, D, oD,
b0, Coel}0, (e, (o0, (e,
100, Qe00. (e00. B0, (00
(500, Ge00. (00, B0, (00
(00, B¢00, (00, 000, (<00,

Now, click General C file (*.c) from

23|Page

FilesExport-General C file (*.c)...

B {f35h - BitFontCreator Grayscale 4.5

File Edit Font Options Help
Mew Font L4 Ia_z SE -1 5@ oAk ﬁ E:E|
Open Font... Cirl+0 —
ki cules Jrorw37 n35)-3083< > Characters Table
o il A B coc1 308B | 306F | 3083 | 4FED | ESTD
- —— Frr)
Export 3 General C file (*.2)... ‘ -5 ‘ - (i A, 1, \ ﬁ}
Configure Data Format... Ctrl+G General Binary file {*.bin)...
Microchip C file (*.c)...
o TR Old BitFontCretaot Pro 3.0 F 18
3 C:\Wsersh...\Consolas24h C Iﬁl:l{l c;e el i
4 Arial_Rounded_MT_Bold37h ASM file (=.35m) ...
Exit Binary file (*.dat) ...
I x Windows Font Resource file (*.fnt)...
Windows Bitmap Font file {*.fon)...
Windows Bitmap files of all chars(*.bmp)

Character Bitmap Data Refresh I
/" character ="Z "%/ -
" Pure data unsigned char Data3053] }= {
' Detail info T
hexcode: 3053

| —— \v_'idth‘:-’._ljelight: I7x35

Save the file, given the name as SimHei_35h.c in our case.

To use the font created we need to "let Arduino know" that we have such data in our
system. Now declare its existence in source code. Snippet shown below.

17 ewtern const BFC_FONT fontArial Rounded MT_Bold55h;
I 158 ewtern const BFC_FONT fontSimHei_355h; I

19 extern const tImage cat_400x248;

20 extern const tImage gqr_code_248x248;

22 nint8_t SW3_demo_page = O;

23 bool demo_done = false;

25 ///@note Font: SimHei 35 ZA{ZH{L in micede 16

75 const uintld t hello_japanese[]={0x3053, 0x3003, 0x308B, 0x3061, 0x306F, " '0'};
27 //f@note Font: SimHei 35 {FYT in unicode 16

O% const uintld t hello_chinese[] ={0=x4F50, 0x597D, ~0'};

Similarly for fontArial_ Rounded_MT_Bold55h and fontConsolas24h the pattern for
declaration is the same.

24|Page

After announcing their existence the last step is to call the relevant functions to print the
texts. Its usage can be found in the source code BloodPressure_GUI.ino and
HelloWorld.ino from the example folder.

@& BloodPressure_GUT | Arduino 1.8.1

File Edit Sketch Tools Help

BloodPressure_GLUI

#if defined (ESP32)
7/ f@note Ref: https://gzithub. com/espressif/arduine—esp32/blob/24305284d085caeddd1190d141710FhEF1ck

ledcSetup (0, 1000, 8); //channel 0, freq=1000, resolution bits = 8

#endif
//display Hello in Chinese and Japanese
uintlf_t w = GFXDisplayGetWitringWidth(&fontSimHei_35h, hello_chinese);
uintlf t h = GFXDisplayGetFontHeight (&fontSimHei 35h) ;
GF¥DisplayPutWstring ((GFE¥DisplayiGetLCDWidth()-w) /2,
(GFEDisplayGetLCDHeight ()—h) /3,
tfontSimHei_35h, hello_chinese, BLACK, WHITE);
w = GF¥DisplayGetWStringWidth (&fontSimHei 35h, hello_ japanese) ;
GF¥DisplayPutWstring ((GFXDisplayGetLCDWidth()-w) /2,
(GF¥DisplayGetLCDHeight (J-h) /3 + h,
tfontSimHei_38h, hello_japanese, BLACK, WHITE)
w = GF¥DisplayGetStringWidth(&fontConselas24h, “Press any key to continue™);
GFXDisplayPutString ((GF¥DisplayGetLCDWidth () —w) /2,
(GFEDisplayGetlLCDHeight ()=h) /3 + 2%k,
kfontConsolas24h, “Press any key to continue’, WHITE, BLACK);

25|Page

Chapter 7 Image creation

In this section we are going to show you a free utility to create image and font source

files for embedded projects, namely LCD Image Converter. This tool's home page:
http://www.riuson.com/lcd-image-converter.

From time to time we need to display some icons such as battery level, an arrow for
navigation, etc.

LCD Image Converter is an open source program that can be downloaded for free
whereas BitFontCreator described in last chapter is a commercial program at an
affordable cost. The purpose of using different programs to convert graphical assets
(fonts and bitmaps) is to show flexibility.

There is no restriction on which tool to use as long as we are drawing pixels on LCD
correctly from arrays, no matter they have been converted by a commercial program or
shareware.

Here we need to convert 3 icons to C arrays for our embedded project. They can be
found in the project folder of BloodPressure_GULino

i =]

Launch lcd-image-converter.exe.

Shortout

Start working with File - Open. Browse to the image to convert.
-Ioix!

Flle Edit Image Font Options Help

MNew Image...
Mew Font...

Recent 4
Renzme..,
Save Cil+5 [NewImage &) New Font
T Start work with new Start work with new font
Close G, ‘mege
Clase All k edited fles: - LCD Tmage Converter] 3]
Comvert... Cilp o test pic 16xduml File Edit Image Font Options Help
Convert All
*battery_46x26 @ |
Quit cirl+Q
Project's home page =
==
Size: 46x26 [Scale: x4

26|Page

From Options-Conversion, make sure the Main Scan Direction and Line Scan
Direction have been set to Top to Bottom and Forward, respectively.

Preset: T

Prepare | Matrix | Reordering I Image I Font | Templates |

Scanning I Preprocessing |

Main Scan Direction: =

ITop to Bottom Yl *top to bottom
* forward
Line Scan Direction: | =/

IForward j' for (var y =0; v < image.height; y++) {

r for (var x = 0; x < image.widthy x++) {
Bands image. addPaint(x, v);

1px T 3
™ use custom script

Under Image tab, select Split to rows checkbox with Block Size set to 8 bit, and Byte

order set to Little-Endian.

2= el Monochrome

Prepare | Matrix | Reordering

Image | Font | Templates |

[from 2blockiz) =
Byte order:

(% Little-Endian

¢~ BigEndian

—Common (Data —Preview
[spiit to rows Prefoc Prefoc
Trailing bits: IDx Il.il.f
™ setto'r Suffic Suffixc:
Block size: I I
m Delimiter: Delimiter:
[~ RLE Compression I I

Level's replacement:

Show Preview |

You may click the Show Preview button to preview the C array. Click OK and Yes to

save change.

Preview image: Idefault

Scale: IZ :I
, Oxff, , Oxifc,
££, Ox£f, Oxff, Oxic,
. 0Ox00, ., Ox0c,
- , 0x00, , Ox0c,
, 0x00, , Ox0c,
Oxff, Ox8c,
Oxfs, , Ox2c,
0x80, , Oxgc,
0x80, . Ox8c,
0x20, , Ox2c,
££, 0x80, , Oxgc,

27|Page

Now click Convert under File»Convert.. (Ctrl+P) to export the *.c file to the root
directory of your project.

Save result file as x|
e a
GUG‘ | . = MemoryLCD - BloodPressure_GUI - mj I Search BloodPressure_GUI O]
Organize * Mew folder S I@I
= .
/'t Favorites —| Documents library
Arrange by: Folder =
Pl Desktop BloodPressure_GUI
4. Downloads ;
. MName = | Date modil
=l Recent Places
& Google Drive | Arial_Rounded_MT_Bold55h 6f7/2018 *
-
%* Dropbox || Consolas24h 672013 ;

4 Libraries -
Irj Documents

J‘l Music

[E] Pictures

B videos

File name:

i
&

-

Save as type: IC source code (*.c)

4 Hide Foldersl

4

=

By following the same procedures two files arrowUp_89x48.c and pulseRate_icon.c
were created. Screen shot of the sketch project folder is shown below for reference.

ties » Documents « Arduino = examples = MemoryLCD - BloodPressure_GLI

th + Burn New folder

Documents library
BloodPressure_GUIL

MName «

|| Arial_Rounded_MT_Bold55h
Arial_Rounded_MT_Bold55h
| arrowDown_89x48

|| arrowlip_89x43

| arrowlp_89x48

|| batteries

|| battery_46x26

|| battery_46x26

@ BloodPressure_GUL

|| Consolas24h

Consolas24h

| & pulseRate_icon

|| pulseRate_icon

Please notice that the C file arrowDown_89x48.c was converted with the up arrow image

flipped in LCD

arrowDown_89x48 manually in a text editor.

28|Page

Image Converter with keyword arrowUp_89x48 replaced by

Launch Arduino IDE and open the sketch BloodPressure_GUI.ino, from the IDE all C
files are show in different tabs.

There is one last step. Complete the C files created with a new header #include
<tImage.h> for everyone of them.

©9 BloodPressure_GUI - battery_46x26.c | Arduino =1t
Fle Edit Sketch Tools Help

battery_46x26.c

uintlf_t height

uint8_t dataSize;

1 tImage

#include i b

50 finclude <tImage.h>

33 static const uintd_t image_data_battery_468x26[158] = {

Now in the sketch file, let the project know we are using those external data by
declaration with extern meaning that we are declaring the data somewhere outside.

21| * Example, if a single digit is to be printed in a field of 3 dig
22| * String(” 7) + String(“9”) to get the correct indentation.
23 | %

24 ewtern const BFC_FONT fontdrial Rounded MT_Bold55h;
25 extern const BFC_FONT fontConsolas2dh;

27 extern const tImage arrowlp_S9x48;
28 extern const tImage arrowDown _S9xdS;
29 extern const tImage batterv_46x28;

30 extern const tImage pulseRate_icon;

33 void buzz(int pin, unsigned int freq, unsigned long duration) ;

34 void buzz(int pin, unsigned int freq, unsigned long duration)

o T

We may now display icons by calling the function GFxpisplayPutImage().

File Edit Sketch Tools Help

BloodPressure_GUI

67 GFXDisplayPowerOn();
62 pinMode (SW3, INPUT_PULLUP); //set GPIO an input with pullup for SW3 & SW2 on Memory LCD Shield
68 pinMode (SW2, INPUT_PULLUP);

71 #if defined (ESP32)

72 ///@note Ref: https: ithub. com/espressif /arduino—esp32/blob/ad305284d085caeddd1190d141710Fb6F1ccbel /cores/esp32/esp3l
73 ledcSetup (0, 1000, 8); //charmel O, fregq=1000, resolution_ bits = 8

74 #endif

76 //display the battery icon

77 GF¥DisplayPutImage(300,5, tbattery 46x26, fzlse);
//display an up arrow

GFXDisplayPutImage (280, 50, &arrowlp_89wd8, false);

a1
o

—
©

80 f/display the down arrow

81 GFXDisplayPutImage (280, 105, &LarrowDown 8948, falss):

82 //display the heart

93 GF¥DisplayPutImage (300, 160, &pulseRate icon, false);

84

85 //Print SYS pressure label & unit

95 curserY = VITAL_SIGN_LABEL_TOP_MARGIN;

87 GF¥DisplayPutString (VITAL_SIGH_LABEL_LEFT MARGIN, cursorY, &fontConsolas24h, String(“SYS.”).c_str(), BLACK, WHITE);

29|Page

Chapter 8 An estimation on power consumption

This section attempts to analyze the power consumption of a Memory LCD when it's
content is maintained and updated. Although such data has been stated in each of the
datasheets of various LCD models, a full understanding on when and how power is spent
would make sense for future low power design. Block diagram below shows the
functional blocks for measurement.

Memory LCD

INA226

J_f 1000

An off-board
instrumentation amplifier
AD620 set to a gain of x200

A\ 4 \4
Tektronix TDS 1012B DSO

Photography on next page shows the set up in action.

30|Page

Press SW3 key to update the LCD
with results of power consumption
displayed on LCD

AD620 instrumentation
amplifier set to a
gain of x200

Output from AD620 connected to
CH1 of TDS1012B (outside the
photo) for correlation.

Run this sketch from File-Examples-MemoryLCD-Energy. Press SW3 to start
measurement.

DirectlO-master

]
Memary LCD ¥ BloodPressure_GUI
= I
SdFat b FirstPixel
Time b Helloworld
TinyGSM »
ugfi-arduino-master]

31|Page

Energy measurement is performed by a function void ina226_measure(void) with
listing shown below.

void ina226_measure(void)

{
busVoltage V = (float)ina.readBusVoltage(); //in V

shuntVoltage uV = (float)ina.readShuntVoltage()*1000000.0; //in uVv
}

The variable busvVoltage_V returns the operation voltage of the Memory LCD. This value
is measured from the output of TPS60140 DC-DC which got tethered to VDD & VDDA of
Memory LCD via R13 (0 Q). Current is measured from a shunt resistor of R5
(10002+0.1%) in the return path of the LCD to ground. An extract of the schematic is
shown below:

] | —

L S,

E J1 FPC Omron XF2M-1015-1A

2 - z

5 — g Z

T S,Eofel, %
Header 6 CERESRXROHT
VBUS ARENN it

VIN+
R I T SCL

— 1—
100R £0.1%

Soldering option for
Memory LCD operation voltage

5VO0

: T INA226 shunt
ouT ! ampdlifier

. i 1

tB J_J_ma R20

c17 6.3V; X7RL 1536K

100n | | 47 VI
17 LOBAT WARN

It has been found that the time to make measurement is critical. The power
consumption during display update(dynamic) to that of display maintain(static) is
different.

To tackle this problem a function dedicated for power measurement during display
update is created.

Listing on next page shows the function

uint32_t GFXDisplayTestPattern(uint8_t pattern, void (*pfcn)(void)).

32|Page

There are two arguments required to run this function:

1. uint8_t pattern : defines the horizontal bit pattern in 8-bit width so that the
whole horizontal line spanning across the LCD will repeat in this pattern for the vertical
direction.

2. void (*pfcn)(void) : isa pointer to function to execute when horizontal line is
updated at half the height of the LCD. This is controlled by the snippet below.

The time taken to update vertical strip pattern is returned in milliseconds.

33|Page

When switch SW3 is pressed, the code will check for a simple software delay of 10ms to
debounce the key and print a short message via Serial Monitor as "Energy measurement
when display is updated :". Then the function GFxDisplayTestPattern(oxFe,
&ina226_measure) will be executed with the time taken returned with variable updateTime.

Current is calculated by simple Ohm's Law:
shuntCurrent_uA = shuntVoltage uV/100; //with a shunt resistor 100Q

Power is calculated not from a direct equation P=V*I. A time factor has been included to
take account of the fact that only a finite time interval is required to display the vertical
strip pattern.

power_uW = shuntCurrent_uA*busVoltage_ V*updateTime/1000; //update time in ms

For full listing readers may check the source code Energy.ino Arduino Sketch.

The accuracy was verified with a DSO (Tektronix TDS1012B). An instrumentation
amplifier AD620 set to a gain of x200 was used to boost the shunt voltage so that it could
be measured by TDS1012B. Data comparing measurements made by the external DSO
to that of INA226 shunt amplifier onboard of the Memory LCD Shield are shown below.

Tek JL @ Acg Complete M Pos: 30.00ms CURSOR
+
Type

Source
I['r f CH1
| !
1 o 5,68Y

Cursor 2
-1.32v

CH1 2.00% 4 10.0ms CH1 /7 1.28Y
15-Jun-15 1755 <10Hz

Don't forget the signal fed to CH1 has been amplified by x200 gain factor.
Therefore, the true value measured by DSO = 3.76V/200 = 0.0188V = 18.8mV.
This agree quite well with INA226's result.

Time taken to update the vertical strip pattern was around 58ms as measured by the
DSO. This result matches very well with the parameter returned by software. But hold!
How come there was a dip in the middle? This was caused by INA226's ADC sampling on
VIN- and VIN+. Occurring in the middle because we have programmed the measurement
to be taken when the line number was equal to DISP_VER_RESOLUTION/2 which is the
half vertical height of the display.

Putting together the LCD voltage, shunt current, and the time taken to update,

Powerupdate = 5.01V * 183.15uA * 58/1000 = 53.22uW.

34|Page

That's it when Memory LCD is being updated. But what about when it is not? When an
image is maintained, which happens 90% of the time for modern GUI, a Memory LCD
drains significant power only when the EXTCOMIN pin goes from low to high in its
perpetual external COM inversion signal at 1Hz.

DSO trace below shows the same trace at CH1 with CH2 measuring EXTCOMIN.

Again, don't forget CH1 was amplified at x200 gain.

Tek e @ Stop M Pos: 30.00rms CH2
-
Coupling
A short pulse triggered by BWiit
each low-high EXTCOMIN 1[|MH2
transition. Don't forget this > l l J[
has been pre-amplified with a o Yolts/Div
X200 gain. Coarse
Prabe
10
L Woltage
EXTCOMIN @ 1Hz l > |
o+ Intvert
ff
CH1 2.00Y CH2 5004 M 250ms CH1 7 1.28Y

15-Jun-18 150 =<10Hz

A closer look at CH1 reveals a pulse of 2.50ms peaks at around 4/200 V (20mV) when
EXTCOMIN goes from low-to-high. For the rest of 997.5ms in a 1 second interval the
shunt voltage was not measurable even with the help of a x200 pre-amplifier!

Tek i & Ao Complete b Pos: 7.500ms CHz2
+
Coupling

3 B Limit

E \ 0ff
, 100MHz
r \.___ 4 Wolts/Div

¥

Probe

0%
Violtage

2»—-————| Irevert
Off
CH1 200 CH2 S.oov b 2.50rms CH1 7 .28y
15=Jun-13 1802 <10Hz

35|Page

This is equivalent to say that, power consumption when the Memory LCD is maintaining
an image like this: : T

showing the vertical strip we have updated when SW3 was pressed, plus all readings
covering part of the strip pattern is calculated as

POweTmaintain = 5V * (20mV/100) * 2.5ms/2,/1000 = 0.00125mW = 1.25uW.

Conclusion

Memory LCD is a high quality monochrome LCD delivering high frame rate, high
contrast LCD, with partial update feature and the at same time consuming as small as
few microWatt when display content is maintained.

36|Page

P2 ; SCL
_ g HIA
=1 —
= 4 VDD -
b= § |—————ENT sV0 [Ty [
P 6 oo —moar—] put LOW when going SLEEP:
.ml. T ﬂl i ﬂ e through this pin leaving VBUS~1.7V when EN=LOW,
- : = EXTCOMIV VDD
YT $V0 4, 5 Teader 8 GND ISP
5558211900 =
P3 Header 10 R12 R11
| P4 SHE SKE
ol Sl 8
3 — H 2 !
4 — w Z SW3
5 — = z _OBAT WARN & swz : P
| 2 Eaf.P ¥ GPIO_VDD b 4 7 2
3 PR =T=R A i = = =
FrlF-ONABR — 2 = -3 4
e &L = =
VIS TP7 e _LLE&]R, L ! : = =
i M M = Header 8 = =
VIN+
R5 c —
fAppearin . — ot GRD
T00R £0.1% oy TRTaDE 505
GPIQ_ VDD EXTCOMIN
e RE OR 443 ISP VDD
e 4 F3 BZ1
:wm Rl _ BT OR ,ﬁ TOK
— - [*] |Ps1240P02CT3
i o =3 o1
1uF 16V 1uF 18V 560p RIS
I_lnm I_I” RI0NL | R13 OR — — i L m.__smﬂmﬁ
c18 = s = 5K
VIN Range (18-3.6)V A7 WD R ELE L
- 5.3V, XTR Soldering eption for L
TPS TPE NL] E) =
U4 Memory LCDr operation v aRD
sV | e TRSV-
s pidl| s
L 2 N our Shunt Ampl
100R +0.1% LM N ri 1 c13 R0 ShuntAmplifi
R19 c17 ——6.3v; XTR_|536K
442K21% 100n au7 — e SeL [—ScL
R 1] 17 [LOBAT WARN Spa —__SDA
S LB LBO Pz S n C—
S3RKLT% Foc F B Ch+ CYe |I_In_m a2 Thivider for W3 output | [N-
Ra elEE 2T 2 I . vRUS Alery [—2
.|_ ;
:
N T 0ILL] 12,19 Li B St -
== GNDGND GND
GND
VITRIP) = L21%{1-+4420536) ~ 2.2V P9
0
M M2 M3 Me % Tide * Memory LCD EVE DTE2(i
[o)[o]fe]le] ” Altrum
FIDU FIDU FIDU FIDU W[Sheet=1 of * 3 .
D Memony LD _Shicld DTEI0T805 1T Memory L CD_Shicld DTEI0 80517 5chDoc
1 e 3 _ 4

Appendix A Schematic diagram of Memory LCD Shield

37|Page

=

ul
INAZZAAIDGSRT

VE

16 17 [|Rig

C5
HL

GND GRDGRD

*

INA226 Shunt Amplifier

Ad

Mumber: #

_ Revision:*

H2NZ0TE Tim

4:18:24 PM[Sheot*2 of * 7

D projects' Sharp

SADMemorLCD

b2

38|Page

PCB layout of Memory LCD Shield

Top layer

100,00

108, 09

00,001

39|Page

702" 03

Appendix B Schematic diagram of ESP32 Application Processor

(=1

s

C8 100n

22uFe.3V
&l Tanfalum

Ul
ESP-WROOM-32 WiFi/BLE Module

o

5

ul&] I O

Pz e om oy
HDRIXE 259mm | SEEZEE
=
GND
V0 U2
& 3 [y Vo 3
TAmoUT) 41
GND
F1
500ma; BVDC
N

I

I R

5 C———{ O

— 1 10K MMET3904
& 3L
= - 2
=) 5
= R2

1
10K

i

«r 2 {NL}

HDRIXS 2.2

P4
HDRIX6 2. 54mm

il
s
i
L

I
S0 _SCE

§E

]

EEACY

R11

iND MOLEX 47352 MICRO 3D SLOT

Tide * ESP3Z AP for Memory LCD

* e

LOD AMESPIZ Memoryl C[Y AP Schi

=1

3

4

40|Page

PCB layout of ESP32 Application Processor

TTTTTTTT

