
Preliminary version 1.0
www.TechToys.com.hk
TechToys Company

1

Development board for PIC16F690 and
Nordic RF modules

Preliminary version 1.0
www.TechToys.com.hk
TechToys Company

2

INTRODUCTION
The development board for PIC16F690 (part# nRF_CB_Eval_1a) is an evaluation
platform for low pin count 8-bit microcontrollers from Microchip, plus the special features
of an integrated CP2102 USB-to-UART bridge from Silicon Labs (www.silabs.com) and
sockets for both Nordic nRF905 multi-band wireless module as well as a new 2.4GHz
wireless module from us. The part number nRF_CB_Eval_1a includes one nRF905
wireless module as a standard package.

DEVICES SUPPORTED BY THE nRF_CB_EVAL
The following devices from Microchip would be supported.

8-pin DIP Flash Devices:
PIC12F508 PIC12F629 PIC12F635
PIC12F509 PIC12F675 PIC12F683
PIC12F510

14-pin DIP Flash Devices:
PIC16F505 PIC16F630 PIC16F684
PIC16F506 PIC16F676 PIC16F688

20-pin DIP Flash Devices:
PIC16F685 PIC16F689 PIC16F785
PIC16F687 PIC16F690

A PIC16F690 is included with the board. The nRF_CB_Eval works with the PICKit 2
Microcontroller Programmer directly. An ICD2 cable is included in the package for direct
connection with an ICD2 as well. PICKit 2 is a low cost device programmer manufactured
by Microchip. One may refer to the PROGRAM SECTION on page 8 for further details.

Every nRF_CB_Eval board will be preloaded with a demonstration program. To see the
result of this program, simply connect a USB cable to a PC. There is nothing dealing with
USB communication yet. The USB port is used for 5V power supply to the CP2102
onboard which includes an on-chip 5 to 3V voltage regulator. This allows the CP2102 to
be configured as a USB bus-powered device. The maximum regulator supply current is
100mA. This is more than enough for our applications even for a wireless module firing
signal at the highest power. For further information on the CP2102, please consult its
data sheet from www.silabs.com. It is also possible to use the battery connector for
mobile applications. However, please make sure that only 2x 1.5V batteries are used
when Nordic wireless module is in place. The maximum voltage for nRF905 and nRF2401
wireless modules is 3.6V.

Preliminary version 1.0
www.TechToys.com.hk
TechToys Company

3

FEATURES

 Function Designator
1 Microcontroller – it is the heart of the board.

PIC16F690 is included with every board.
U3

2 CP2102 USB-to-UART bridge converts USB data to UART
format without handling the USB software layer. This allows
us to use UART programs for microcontrollers on a PC’s USB
port. On-chip 5 to 3V regulator is configured as a USB bus-
powered device.

U1

3 2x1.5V battery socket with enable jumper JP1 for mobile
applications.

3V Battery & JP1
4 ICSP connector directly compatible with Microchip PICKit2

programmer. Triangular mark 1 indicates the MCLR pin of U3.
An RJ12 to 6-pin 2.54mm cable is included for ICD2
connection.

ICSP

5 2.54mm 2x7 box header for Nordic nRF905 433/866MHz
wireless module. Square pad indicates pin 1.

nRF905_MOD
6 2.54mm 2x4 box header for Nordic nRF2401 2.4GHz wireless

module. Square pad indicates pin 1.
nRF2401

7 LED D4 to D7 connected to RC0 to RC3 D4-D7
8 10k trimmer for ADC experiments RA0
9 Tact switch for RESET or general purpose IO. Software

selectable.
RESET

10 SMT and DIP prototype areas NA

Preliminary version 1.0
www.TechToys.com.hk
TechToys Company

4

nRF_CB_Eval is compatible with all applications designed for LOW PIN COUNT DEMO
BOARD manufactured by Microchip. There are 12 lessons provided by Microchip
beginning with Hello World application to Look-up Table all designed in assembly
language. One may download all of them at
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dD
ocName=en023805 under the title of PICKit2 Starter Kit Lessons.

On top of the PICKit 2 starter Kit Lessons, there are several examples on CP2102 and
Nordic nRF905 RF module. The programming language is PICC-Lite developed by Hi-Tech
software (www.htsoft.com).

ABOUT PICC-Lite COMPILER
PICC-Lite is a C compiler developed by Hi-Tech Software. Visiting the company web site
of Hi-Tech Software you will find it not only develops C complier for Microchip, it also
does compilers for most of the other microcontrollers in the market. Under the download
section you will find HI-TECH PICC-LITE v9.60 as the Free Software without any expiry
date. Click the link below to see a full description of the compiler and its limitation.

http://www.htsoft.com/products/compilers/PICC-Lite.php

For PIC16F690, we have 2K program memory supported with 2 RAM banks. It may not
be enough for a professional money-earning project but it would be alright for
demonstration purpose. Download the package and get it installed by accepting the
default directory.

By accepting the default installation path, you will get a bin directory under the folder
C:\Program Files\HI-TECH Software\PICC\lite\9.60\. This bin folder contains the
execute file. Besides, there is a sample folder with several examples. We will use some
of them in forth coming projects.

Preliminary version 1.0
www.TechToys.com.hk
TechToys Company

5

It is assumed that MPLAB version 7.50 or later has been installed in your development
workstation. To integrate PICC-Lite with MPLAB, first create a new project under
Project→New…in MPLAB. A New Project window will pop up with Project Directory
and Project Name information that you need to fill in. Just create a directory of your
convenience (my case being D:\Microchip\PICC-Lite\HelloWorld) and the first
project being the HelloWorld as the Project Name.

From Configure→Select Device… menu of the MPLAB, select 16F690 as the
microcontroller to use. Click OK.

Preliminary version 1.0
www.TechToys.com.hk
TechToys Company

6

Click Project→Select Language Toolsuite…to bring up the following dialog box.

In the Active Toolsuite drop down manual select HI-TECH Universal ToolSuite and then
browse to the .\PICC\lite\9.60\bin\picl.exe file under the Location text box. The
execute file picl.exe is the compiler that we need. Click OK to exit.

All we have to do now is to create a new document and type in a simple LED blinking
program as the HelloWorld project. Under File, click on New. A new document will be
created with an empty template. Type in the following code and then save it as main.c
under the project folder.

Right click on Source Files at the project workspace at the left Panel and add main.c to
the Source Files. That is all we need! Under Project, press Build to compile this simple
program.

#include <htc.h>

main(void)
{

;
}

Preliminary version 1.0
www.TechToys.com.hk
TechToys Company

7

The Output Window shows that we have at least successfully compiled a program,
even though this program will not do anything yet! Browse to the project folder you will
see there is a HelloWorld.hex file created. This is the hex file we need to download to
16F690 to build an embedded system. Before going deeper, let’s investigate the content
of the header file <htc.h> included in the first statement.

Browse to the installation directory of PICC-Lite under .\PICC\lite\9.60\include, there
is the htc.h file. This is the header file for all compilers developed by HI-TECH Software,
which in turns includes another header file pic.h for our case (PICC-Lite). Inside pic.h,
there are header files of all devices supported by PICC compiler which are not only for
the lite version but also for the full version of price US$950. Inside pic.h we have the
following directive language:

#if defined(_16F631) || defined(_16F677) || defined(_16F685) ||\
 defined(_16F687) || defined(_16F689) || defined(_16F690)
 #include <pic16f685.h>
#endif

Under Configure→Select Device… we have already selected 16F690 as the target
device thus we have satisfied the condition above _16F690. As a result, the header file
pic16f685.h has been included implicitly to define all relevant register definitions of the
PIC16F631, 677, 685, 687, 689, and 690 family. That is also why we did not need to
include 16F690.h header file (there is no such file either). The family is represented by
the header file 16F685.h and it has been included by htc.h as a whole.

Read briefly pic16f685.h we know direction pins and IO pins are represented as TRISX
and RX. For port C, direction definition will be TRISCx, and RCx. If we want to use RC0
which is wired to LED D4 on our hardware, we need to configure TRISC0 and RC0. We
may switch on the LED D4 by the following code:

The code is self-explanatory. Compile this code to obtain a hex file found under the same
project directory. Here we come to the step to program this hex file.

#include <htc.h>

main()
{
 TRISC0 = 0; //configure RC0 as an output
 RC0 = 1; //output high for RC0
 while (1) ; //trap the program here as an infinite loop
}

Preliminary version 1.0
www.TechToys.com.hk
TechToys Company

8

PROGRAM SECTION

- ICD2 operation
The first choice is to use an ICD2 if you have one. Use the ICD2 cable supplied with the
package and match the embossed triangular mark of the 2.54mm 6 pins header with the
white triangular mark 1 on board as shown below. This is the MCLR pin.

In MPLAB select ICD2 under the Programmer menu. One must notice the difference
between using an ICD2 with a PICKit2 programmer. PICKit2 requires a voltage of 4.5V
minimum for programming because of the Bulk Erase Programming method used in
PICKit2. However, there is no such restriction with ICD2. As a result, it is possible to
have the nRF905 module safely plug in the socket for in-circuit serial programming since
the whole system would be powered by 3.0V from internal regulator of CP2102. However,
it is mandatory to use another USB cable for supplying USB bus power to CP2102 which
converts 5V to 3V for the whole system when ICD2 is used. Finally click program under
the Programmer menu to finish the job.

Preliminary version 1.0
www.TechToys.com.hk
TechToys Company

9

- PICKit2 operation
nRF_CB_Eval board is compatible with PICKit2. Match the triangular mark on PICKit2
with the white triangular mark 1 on board as shown below. Select PICKit2 under the
Programmer menu and click program. Else, install the PICKit2 application and launch
it as an independent programming application. There are more options available from
PICKit2 application such as force Vdd supply from the PICKit2, and checking the 5V
combo box will deliver 5V from PICKit2 after successfully downloaded a hex file to the
target. If a PICKit2 is used for programming, it will automatically detect if Vdd is present
on the target board and decide if 5V is required for the target board. It would be possible
also to power the target board by checking the 5V supply option from the PICKit 2
programming user interface. Therefore some applications may be running fine without
even using the USB bus power. On the other hand, this would be particularly dangerous
for the nRF905 module because it accepts only up to a Vdd of 3.6V maximum thus if an
accidental checking of the 5V supply with the nRF905 plug in the socket, 5V supply will
sneak from the IO pins of the microcontroller with 5V level thus damaging the nRF905
module! So, only use ICD2 for programming (if you have one) when the nRF905 module
is present –OR- remove the nRF905 when a PICKit2 is used for programming.

Preliminary version 1.0
www.TechToys.com.hk
TechToys Company

10

LED ROTATE EXAMPLE
It is the second example program written in Hi-Tech PICC-Lite. The program is to rotate
the LEDs onboard with a rate defined by the number of key stroke on the RESET key
which is configured as a general purpose IO in this case. The source code is available for
download from our web site (Doc 07) under

http://www.techtoys.com.hk/PIC_boards/nRF_CB_Eval_1a/nRF_CB_Eval_1a.htm

The first code line to keep an eye open is the configuration bit set

__CONFIG(INTIO&WDTDIS&PWRTDIS&MCLRDIS&UNPROTECT&BORDIS&IESODIS&FCMDIS);

One must study a little bit on the special feature of the 16F690 device. There is no
crystal onboard; so, what is the speed of the microcontroller running? There are eight
clock modes available with PIC16F690. It has a Precision Internal Oscillator which has
been calibrated to ±1% with software selectable frequency range of 8MHz to 32kHz.
Figure below shows these eight modes extracted from the data sheet.

We would like to accept the last option to use the internal oscillator with I/O capability
on OSC1 (RA5) and OSC2 (RA4) pins. The key is inside the Configuration Word register
(CONFIG) together plus a software selectable register OSCCON.

__CONFIG() is a macro offered by PICC-Lite to configure the Configuration Word register
of 16F690. It is defined under the header file pic.h. This macro is useable for all devices
and that is why it is defined only once under pic.h. We are safe to use this macro
because it has been defined by pic.h which was included with htc.h in our source code.
For arguments inside __CONFIG(), we may browse to the end of the pic16f685.h header
file to locate the exact wording of the arguments. Only two of them are more relevant to
us in this example.

Extract of the __CONFIG() argument
INTIO Internal RC with no clock output capability of the OSC1 and OSC2 pins
MCLRDIS MCLR function disabled, thus no reset function for RA3 pin. It is

configured as an IO pin instead

To configure 4MHz internal oscillator clock speed, we need the help of another register
OSCCON. Setting “SCS = 1” will use the Internal Oscillator as the system clock. Default
IRCF<2:0> bits is 110 for 4MHz upon a system reset thus we need not do anything on it
if 4Mhz clock is what we need.

Preliminary version 1.0
www.TechToys.com.hk
TechToys Company

11

What if we want a speed of
8MHz?

Replace the line SCS = 1
with the following code will
do:

OSCCON = 0b01110001;

Download the source code and compile it with PICC-Lite. After compilation, program the
resultant hex code will give you the desired result.

Preliminary version 1.0
www.TechToys.com.hk
TechToys Company

12

UART EXAMPLE WITH CP2102

First of all, we need to install the Virtual COM PORT driver from Silicon Labs at
http://www.silabs.com/tgwWebApp/public/web_content/products/Microcontrollers/Interf
ace/en/interface.htm. Some PCs and notebook computers nowadays may not come with
a COM PORT anymore. Unfortunately, serial communication in UART is still common on
microcontrollers. We need a device to convert data between USB and UART formats for
small microcontrollers. There are various solutions offered by a number of chip vendors
like FTDI. However, because FTDI is not popular in my place so an alternative offered by
Silicon Labs has been employed. One may find more information about using USB with
the simplicity of RS-232 from Beyond Logic at http://www.beyondlogic.org/usb/ftdi.htm.

The CP2102 is a highly-integrated USB-to-UART bridge controller providing a simple
solution for upgrading RS-232 designs to USB using just a few additional capacitors and
resistors. With a Virtual COM PORT driver installed, a PC will be installed with a COM
PORT emulated by the driver as shown with the screen shot below.

Once we have got a COM PORT emulated under the Device Manager, we would be able to
use serial communication programs such as HyperTerminal or Docklight
(www.docklight.de) on PCs without an actual COM PORT. Personally I prefer Docklight
because it offers much more flexibility. Listing below shows the demonstration code for
UART demonstration.

 #include <stdio.h> (1)
#include <htc.h>
#include "uart.h" (2)

__CONFIG(INTIO&WDTDIS&PWRTDIS&MCLREN&UNPROTECT&BORDIS&IESODIS&FCMDIS); (3)

void main(void)
{

unsigned char input;
 ANSEL = 0x00; (4)
 ANSELH = 0x00; (5)
 SCS = 1; (6)

 INTCON = 0; (7)

 init_comms(); (8)
 printf("\rPress a key and I will echo it back:\n"); (9)
 while(1)

{
 input = getch(); (10)
 printf("\rI detected [%c]",input); (11)
 }
}

Preliminary version 1.0
www.TechToys.com.hk
TechToys Company

13

Line (1) includes the standard IO header file stdio.h for printf function in the main code.
Though it is possible to do it for demonstration purpose, stdio.h is taking up a lot of
program code space which is particularly inadequate in our case with 2KB limit compiler.
For simple demonstration like this one, we do have alternative to save code. We will
come back on this later.

Line (2) is the heart of this demonstration. The header file uart.h is copied from the
sample program offered by PICC-Lite with minor modification on the RX_PIN & TX_PIN
definition to match the uart pin of PIC16F690. The baud rate and system clock speed are
also defined in this header file so that the desired baud rate of 9600bps can be obtained.

Line (3) specifies the configuration bit setting similar to previous example with the only
difference of MCLR function enabled. Therefore it is possible to use the RESET key to
restart the program in this case.

Line (4) & (5) configure digital IO functions for all pins.

Line (6) specifies internal oscillator as the system clock.

Line (7) disables interrupt for unnecessary program branch to interrupt vector as we
don’t use it yet.

Line (8) makes use of init_comms() macro defined in uart.h to configure the relevant
UART registers for proper transmit and receive function.

Line (9) uses printf function to output the message “Press a key and I will echo it back:”
to COMM PORT in 9600bps, 8-n-1.

Line (10) waits for a keystroke from the PC indefinitely.

Line (11) echoes the character received from the PC with a message “I detected x” with
x being the character received.

Figure here shows the result of communication captioned by Docklight V1.6.

Preliminary version 1.0
www.TechToys.com.hk
TechToys Company

14

WORKING WITH NORDIC nRF905 WIRELESS MODULE

nRF905 is a single chip 433/868/915MHz wireless transceiver manufactured by Nordic
Semiconductor (www.nordicsemi.no). The part number nRF905_MOD is a multi-band
wireless module completely assembled with peripheral passive components and loop
antenna optimized for 433Mhz wireless communication. Its further information can be
found under our web site at
http://www.techtoys.com.hk/RF_Modules/Nordic_905/nRF905.htm.
It stacks on nRF_CB_Eval through the 2.54mm header of 2x7 pins. The nRF905 wireless
module hooks up with a microcontroller via the SPI interface. Either a built-in SPI
module or software-based SPI method can be used. On top of SPI data lines, there are
several wires required for power management and data ready acknowledge. Figure
below illustrates a simplified block diagram.

An extract of the schematic below shows the microcontroller-to-nRF905 interface map.

PIC16F690

nRF905 Module

TXEN (Pin2)
TRX_CE (Pin3)
PWR_UP (Pin4)

CSN (Pin12)
SCK (Pin11)
MOSI (Pin10)
MISO (Pin9)

CD (Pin6)
AM (Pin7)
DR (Pin8)

Remarks: Besides the nRF905 in 433MHz, nRF_CB_Eval
board also works with another 2.4GHz wireless module with
nRF2401. More information will be available shortly.

Preliminary version 1.0
www.TechToys.com.hk
TechToys Company

15

A practical scenario of a multi-node wireless communication environment illustrated
below:

 Data Packet Transmission (ShockBurst TX)

1. When the PC has data for remote node Slave 1, the address of Slave 1 and data
are sent from the PC to the mcu. Registers for address is called TX_ADDRESS (1-
4 bytes), and the registers for data are TX_PAYLOAD which is software
configurable from 1-32 bytes. The mcu interprets this data packet and get
nRF905 prepared for transmission by bringing PWR_UP and TX_EN high while
keeping TRX_CE low to put it in Standby Mode. Data packet is clocked into
nRF905_MOD via SPI interface by setting CSN low to “chip enable” and it is
clocked (SCK) into the nRF905 silicon via the MOSI pin.

2. After step 1, we have the address(TX-address) and data (TX-payload) stored
inside the corresponding registers of nRF905. A low-high-low pulse of 10µs
minimum1 on TRX_CE pin is required to turn on the nRF905 transmission mode
(Nordic calls it ShockBurst transmission).

3. nRF905 is powered up with preamble and CRC calculated by hardware. No
software from the mcu is required. Then the data packet is transmitted
automatically. Data Ready (DR) pin is set high when transmission is completed.
The mcu can be configured to detect the DR pin by interrupt so there is no mcu
polling time.

1 There is an alternative to keep TRX_CE high instead of a low-high-low pulse for single shoot transmission if
continuously retransmission of the package is preferred. If TX_EN is kept low while keeping the TRX_CE high,
nRF905 then enters receive mode after finished transmitting. Please refer to nRF905 Product Specification for
details.

mcu nRF905_MO
D

Slave 1

mcu nRF905_MO
D

Slave 2

mcu nRF905_MO
D

Master

PC

Preliminary version 1.0
www.TechToys.com.hk
TechToys Company

16

Data Packet Receive (ShockBurst RX)

1. ShockBurst Rx is selected by setting PWR_UP high, TRX_CE high, and TX_EN low.

This prepares nR905 for continuously monitoring the air for incoming
communication. The current consumption for this RX mode reaches an ample
amount of 12mA, which is a lot for battery operation. A rechargeable AA battery
normally has a capacity of 2,000mAh. That means a continuous RX operation of
166.66 hours in an ideal situation (2,000mAh/12mA). There is a reduced power
mode to reduce the sensitivity; however, the penalty is a degraded signal
detection performance with only a slight reduction from 12mA to 10mA of
consumption. The solution for this may be periodic wake up on the nRF905
module from power down mode for a short period of time, say 1ms in every 1
second if the gap between data transmission is known and there is a good data
handshake protocol.

2. When the nRF905 senses a carrier at the receiving frequency configured in the
CH_NO and HFREQ_PLL registers (i.e. the fRF), the Carrier Detect (CD) pin will be
set high. The air is full of ambient RF waves of different frequencies however.
Therefore this pin only is not enough for detection of a valid data packet.

3. When a valid address (for Slave 1 in our discussion) is received, the Address
Match (AM) pin is set high. You may imagine Slave 2 is also monitoring the air for
the same carrier frequency but the AM pin is not set because the data packet is
not for Slave 2. Silicon of both Slave 1 and Slave 2 checks continuously for an
address match and set its AM pin when there is a match.

4. Here it comes the data integrity. When a valid packet has been received with the
correct CRC found, nRF905 will remove the preamble, address, and CRC bits by
hardware. No mcu software required! Then the Data Ready (DR) pin is set high to
notify the mcu for a successful data packet.

5. It is up to the designer to set the TRX_CE pin low to put nRF905 to low current
Standby mode (12-46µA, depends on crystal frequency) or stay at the
ShockBurst RX mode for continuous monitoring.

6. Data packet is stored in the RX data registers (Nordic gave it the name of RX
PAYLOAD). Its size is software configurable for a size of 1-32 bytes. It is up to the
designer when to retrieve from the RX_PAYLOAD. When all payload data has been
retrieved, Data Ready (DR) and Address Match (AM) are set low again for the
next data packet.

There are two example programs available from us. The driver is still under development
therefore the current version is a preliminary one; but it is enough for demonstration.
These are nRF905 Tx demo and nRF905 Rx demo for transmit and receive functions
respectively. The codes are heavily commented so anyone would be able to understand.

------------ to be continued with separate application notes ------------

