
AT89S52-gLCD-STK1
Chapter 6 Serial EEPROM by John Leung

 1
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Chapter 6 Serial EEPROM

6.1 ATMEL I2C Serial EEPROM

The AT24C256 (U6) is useful for our application in storing critical data like temperature
and humidity data, its time stamp, graphics, icons, or even fonts for the graphical LCD.
AT24C256 provides 262,144bits of serial electrically erasable and programmable read
only memory. The memory is organized as 32,768 words of bytes arranged in page size
of 64-bytes each; therefore, there are 512 pages available.

A simple mathematic: 262,144 bits = 512 pages x 64bytes x 8 bits per bytes.

Figure 6.1.1 AT24C256 EEPROM PCB layout

AT89S52-gLCD-STK1
Chapter 6 Serial EEPROM by John Leung

 2
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

AT24C256 is sharing the same I2C-bus with PCF8563. The same low-level I2C driver is
used for both devices. The idea is illustrated in Figure 6.1.2.

Figure 6.1.3 correlates the logic levels to function calls for writing a single byte 0xA8 to
AT24C256 EEPROM at its internal address 0x00C7. The device address is 0xA0, again
assigned by the manufacturer.

1. Mcu generates a start condition. The mcu initiates a data transfer by “telling” all
I2C devices that, now I want to “talk” to somebody.

2. Locate the address of AT24C256 since it is possible to have more than one device
on the same I2C-bus (it is PCF8563 in our case). READ/WRITE command is
embedded as the last bit of the device address. Then, the mcu waits for an
acknowledge signal from AT24C256.

3. Mcu sends the internal register address (first and second word addresses) to
AT24C256. The mcu waits for ACK after each address byte sent.

4. Mcu continues sending data. It can be a single byte or multiple bytes for single
byte write or page write.

5. Mcu stops communication by issuing a stop condition over the I2C-bus.

i2c_Start()
i2c_SendByte(0xA0)

i2c_SendByte(0x00)
i2c_SendByte(0xC7)

i2c_SendByte(0xA8)
i2c_Stop()

Figure 6.1.3 AT24C256 EEPROM single-byte write

Application Interface (RTC)

rtcInit ()
rtcSetDate ()
rtcSetTime ()
rtcGetDate ()
rtcGetTime ()

Hardware dependent
functions

i2c_Start ()
i2c_Stop ()
i2c_Ack ()
i2c_SendByte ()
i2c_RcvByte ()
i2c_SeqWr ()
i2c_SeqRd ()

Application Interface
(EEPROM)

eeprom_WrByte ()
eeprom_WrPage ()
eeprom_RdRandomByte ()
eeprom_RdPage ()

AT89S52

P1.3 (SDA)
P1.2 (SCL)

Figure 6.1.2 I2C driver module block diagram

AT89S52-gLCD-STK1
Chapter 6 Serial EEPROM by John Leung

 3
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Figure 6.1.3 translates to API function i2c_SeqWr() as shown in listing 6.1.1. There is no
need to use i2c_Start() and i2c_SendByte() individually as we have encapsulated the
whole sequence inside i2c_SeqWr() with argument ‘length’ equate 1.

Warning: a write cycle does not happen instantaneously. There is a Write Cycle Time as
stated on data sheet. Its value ranges from 20ms to 5ms. Figure 6.1.4 shows an extract
of the data sheet about Byte Write operation.

That is why we need to delay for 5ms after each eeprom_WrByte() in the coming
demonstration program (Listing 6.1.3).

If a large block of data is written to EEPROM, we may use Page Write. A page write is
initiated the same way as a byte write, but the microcontroller does not send a stop
condition after the first data word is clocked in. Instead, after the EEPROM acknowledges
receipt of the first data word, the microcontroller can transmit up to 63 more data words.

Refer to the source code for details on eeprom_WrPage ().

uchar eeprom_WrByte(uchar eeprom_addr, uint dataptr, uchar c)
{
 uchar dataptrh, dataptrl;

 dataptrh = (uchar) (dataptr>>8);
 dataptrl = (uchar) (dataptr);

 if(i2c_SeqWr(eeprom_addr, dataptrh, dataptrl, &c, 1)==noACK)

return (EEPROM_BUS_ERR);

 return (EEPROM_BUS_OK);
}

Listing 6.1.1 eeprom_WrByte() function

Figure 6.1.4 BYTE WRITE OPERATION

AT89S52-gLCD-STK1
Chapter 6 Serial EEPROM by John Leung

 4
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

What about reading a byte from EEPROM? Take an example of Random Read (Figure
6.1.5).

Again, no more individual call to i2c_Start() & i2c_SendByte() required. We simply make
use of i2c_SeqRd() by putting argument length =1.

Refer to the source code for details on eeprom_RdPage ().

Figure 6.1.5 Extract from AT24C256 data sheet on RANDOM READ

uchar eeprom_RdRandomByte(uchar eeprom_addr, uint dataptr, uchar *s)
{
 uchar dataptrh, dataptrl;

 dataptrh = (uchar) (dataptr>>8);
 dataptrl = (uchar) (dataptr);

 if(i2c_SeqRd(eeprom_addr, dataptrh, dataptrl, &s[0], 1)==noACK)
 return (EEPROM_BUS_ERR);

 return (EEPROM_BUS_OK);
}

Listing 6.1.2 RANDOM READ BYTE OPERATION

AT89S52-gLCD-STK1
Chapter 6 Serial EEPROM by John Leung

 5
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Listing 6.1.3 shows at24c256_demo1.c.
The source code at cd:\src\chp6\src6_1\at24c256_demo1.Uv2.

#include <REGX52.h>
#include "at24c256.h"
#include "delay.h"
#include <stdio.h> //Keil library

void init_uart()
{
 SCON = 0x52;
 TMOD = 0x20;
 TCON = 0x69;
 TH1 = 0xfd;
}

void main(void)
{
 unsigned char eeprom_dat;
 unsigned int i;
 unsigned char code s[64]={ (1)

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,\
 20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,\
 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,\
 60,61,62,63};

 unsigned char k[64]; (2)

 init_uart();
 printf("TESTING EEPROM\n"); (3)
 DelayMs(1000);

 eeprom_WrPage(EEPROM_ADDR, 0x0000, &s[0], 64); (4)
 DelayMs(10); (5)

 eeprom_RdPage(EEPROM_ADDR, 0x0000, &k[0], 64); (6)
 for(i=0;i<64;i++)
 printf("eeprom_dat:%bu eeprom_address at: %u\n", k[i],i); (7)

 i=64;
 while(i<200)
 {
 if(eeprom_WrByte(EEPROM_ADDR, i, 0xA8)==EEPROM_BUS_ERR) (8)
 {
 if(eeprom_WrByte(EEPROM_ADDR, i, 0xA8)==EEPROM_BUS_ERR) (9)
 printf("Write error at address: %u\n", i); (10)
 }

 DelayMs(5); (11)

 if(eeprom_RdRandomByte(EEPROM_ADDR, i, &eeprom_dat)==EEPROM_BUS_OK) (12)
 printf("eeprom_dat:%bX eeprom_address at: %u\n", eeprom_dat,i); (13)
 else
 printf("Read error at address: %u\n", i); (14)

 i++;
 }

 for(;;)
 {
 ;
 }
}

Listing 6.1.3 at24c256_demo1.c

AT89S52-gLCD-STK1
Chapter 6 Serial EEPROM by John Leung

 6
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Figure 6.1.6a

Figure 6.1.6a and Figure 6.1.6b show the Docklight screenshots by running this
demonstration.

eeprom_dat runs from 0 to 63, until eeprom_address at 64, eeprom_dat = A8.
eeprom_dat equates 0xA8 as we have instructed in Line (8) until eeprom_addr finishes
at 199.

⇒ Chapter 7

Figure 6.1.6b

