
AT89S52-gLCD-STK1
Chapter 5 Real time clock by John Leung

 1
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Chapter 5 Real time clock

5.1 Philips PCF8563 Real time clock (RTC)

Philips PCF8563 (U5) is an I2C compatible real time clock (RTC). Alternatively, this chip
can be replaced by a software module like the Time-of-Day Clock module described in
Labrosse’s book1. However, since we are using only the 2K evaluation copy of Keil C, a
software-based solution would be out of consideration due to its code size.

RTC is useful for our application in providing time stamps for data acquisition. Philips
PCF8563 has been chosen because it is readily available, low cost, and I2C compatible.
The last factor leads us to ATMEL serial EEPROM for data storage because it is I2C
compatible as well. We will come back on serial EEPROM in chapter 6.

A high value capacitor (C16), namely the super-cap, is included as a backup power
source. Its value is 0.047F (47,000µF), enough for hours of main power removal without
losing data of the current time. Figure 5.1.1 shows the PCB layout with all RTC
components highlighted. Figure 5.1.2 shows an extract of the schematic. There are
internal pull-up resistors for P1, 2, &3 so external pull-ups have been omitted for P1.2 &
P1.3.

1 Chapter 6: Time-of-Day Clock, Embedded System Building Blocks, 2nd edition, by Jean J. Labrosse

Figure 5.1.1 Real time clock PCB layout

AT89S52-gLCD-STK1
Chapter 5 Real time clock by John Leung

 2
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

PCF8563 is sharing the same I2C-bus with ATMEL 24C256. The same low-level I2C driver
is used for both devices. The idea is illustrated in Figure 5.1.3.

Application interface for both devices would be hardware independent functions in C
programming language. Hardware dependent functions have been coded as a separate
software module (iic.c & iic.h). They have been custom made for AT89S52 at a crystal
frequency of 12MHz (alright for 11.0592MHz as well) and Keil C specific. Because I2C is a
common protocol for microcontrollers, this method works for other devices as long as

Figure 5.1.2 I2C-bus, interface for PCF8563 & 24C256

Application Interface (RTC)

rtcInit ()
rtcSetDate ()
rtcSetTime ()
rtcGetDate ()
rtcGetTime ()

Hardware dependent
functions

i2c_Start ()
i2c_Stop ()
i2c_Ack ()
i2c_SendByte ()
i2c_RcvByte ()
i2c_SeqWr ()
i2c_SeqRd ()

Application Interface
(EEPROM)

eeprom_WrByte ()
eeprom_WrPage ()
eeprom_RdRandomByte ()
eeprom_RdPage ()

AT89S52

P1.3 (SDA)
P1.2 (SCL)

Figure 5.1.3 I2C driver module block diagram

AT89S52-gLCD-STK1
Chapter 5 Real time clock by John Leung

 3
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

they are I2C compatible. If we are using the same RTC or EEPROM for other
microcontrollers, or switching to another C compiler, it would be alright to modify just
iic.h and iic.c and leave API for RTC and EERPOM unchanged or minimal touch-up.

References for I2C protocol can be found from the following links:

http://www.robot-electronics.co.uk/htm/using_the_i2c_bus.htm
http://users.telenet.be/educypedia/electronics/I2C.htm

Just type in iic or i2c tutorial under Yahoo or Google, there will be over hundreds of nice
articles at your finger tip. So, only a correlation between the software driver and data
read/write scenario is presented here rather than repeating I2C protocol itself.

For Philips RTC, the following sequence is involved to set time to 23:59:30 (say). Slave
address for Philips 8563 RTC is 0xA2. This address is assigned by the chip manufacturer.
This is established by some sort of international committee, I think.

We need to fill-in the contents of the seconds, minutes, and hours registers to set the
current time in sequence of sec:min:hour in BCD format, and we are doing this by
repeat calling the function i2c_SendByte(). After we have identified the correct device
(slave address=0xA2), the internal register address of that particular device is located by
the second call to i2c_SendByte() with argument being 0x02. The WORD ADDRESS at
0x02 is exactly the register address of seconds as shown in the register map of PCF8563
(Figure 5.1.5). Then we are writing 0x30, 0x59, & 0x23 to set the current time to
23:59:30. Since there is an auto increment feature, we don’t need to take care of the
address pointer increment after having located the first WORD ADDRESS at 0x02. Finally,
the mcu closes communication by issuing an i2c_Stop(). That’s it!

i2c_Start()
i2c_SendByte(0xA2)

i2c_SendByte(0x02)
i2c_SendByte(0x30)
i2c_SendByte(0x59)
i2c_SendByte(0x23)

Set clock time to
23:59:30

i2c_Stop()

Figure 5.1.4 Set current time for Philips PCF8563 RTC

AT89S52-gLCD-STK1
Chapter 5 Real time clock by John Leung

 4
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

It is like the first adjustment on date/time for a new piece of home appliance. We just
need to do it once prior to using it. Thereafter the current date/time will be shown on the
user panel. Showing the current time requires subsequent RTC-read. Reading the current
time from PCF8563 involves the following function call (Figure 5.1.6).

Figure 5.1.5 Register overview (Philips PCF8563)

i2c_Start()
i2c_SendByte(0xA2)

i2c_SendByte(0x02)
i2c_SendByte(0xA2+1)

i2c_RcvByte()

i2c_Ack(noACK) i2c_Stop()

i2c_Ack(ACK)

Figure 5.1.6 Read current time from PCF8563 RTC

AT89S52-gLCD-STK1
Chapter 5 Real time clock by John Leung

 5
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

The first three function calls are the same as that in time-set (Figure 5.1.4). They are

1. i2c_Start() // i2c start condition
2. i2c_SendByte(0xA2) // device address
3. i2c_SendByte(0x02). // internal register address to access

These functions are used to identify the correct device over the I2C-bus, and locate the
internal register of that particular device to read from.

Then we have to send a READ command by i2c_SendByte(0xA2+1). I2C READ command
is embedded in the device address with the last bit being 1. That’s why the argument
becomes 0xA2+1 (0xA3).

i2c_RcvByte() is used to return the byte read from the SDA data pin.
i2c_Ack(ACK) used to generate an ACK condition by the master (mcu), except for the
last byte received no ACK signal required; therefore i2c_Ack(noACK) with the last byte.
Finally mcu closes communication by calling i2c_Stop().

As shown above, there is not a lot of function required to write/read to-and-fro an I2C
device. Listing 5.1.1 shows the major parameters and functions.

Listing 5.1.1 shows the header file for low level I2C functions (iic.h) for both Philips
PCF8563 RTC and ATMEL 24C256 Serial EEPROM.

#ifndef _IIC_H_
#define _IIC_H_

sbit SDA = P1^3; (1)
sbit SCL = P1^2; (2)

#define noACK 0 (3)
#define ACK 1 (4)
#define NONE 0xFF (5)

void i2c_Start(void); (6)
void i2c_Stop(void); (7)
void i2c_Ack(bit reply); (8)
bit i2c_SendByte(unsigned char c); (9)
unsigned char i2c_RcvByte(void); (10)

bit i2c_SeqWr(unsigned char device, unsigned char addrh, unsigned char addrl,
unsigned char *s, unsigned char length); (11)

bit i2c_SeqRd(unsigned char device, unsigned char addrh, unsigned char addrl,
unsigned char *s, unsigned char length); (12)

#endif

Listing 5.1.1 iic.h header file

AT89S52-gLCD-STK1
Chapter 5 Real time clock by John Leung

 6
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Line (1) defines the SDA for I2C data

Line (2) defines the SCL for I2C clock

Line (3) – (5) are public constants for portability

Line (6)

i2c_Start()
void i2c_Start(void);

* Function: Generate an I2C start condition
* Argument: none
* Return: none
* Note: Hardware-dependent for direct I/O operation on SDA and SCL required.

Line (7)

i2c_Stop()
void i2c_Stop(void);

* Function: Generate an I2C stop condition
* Argument: none
* Return: none
* Note: Hardware-dependent for direct I/O operation on SDA and SCL required.

Line (8)

i2c_Ack()
void i2c_Ack(bit reply);

* Function: This function is called to generate an ACK or noACK by the master
* Argument: 'reply' ACK if an acknowledge is required, i.e. SDA pulled low
* noACK if NO acknowledge required, i.e. SDA pulled high
* Return: none
* Warning: The argument ‘reply’ of type 'bit' is KEIL C specific
* Note: ACK and noACK public constants defined under iic.h
* Hardware-dependent for direct I/O operation on SDA and SCL required.

AT89S52-gLCD-STK1
Chapter 5 Real time clock by John Leung

 7
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Line (9)

i2c_SendByte()
bit i2c_SendByte(unsigned char c);

* Function: This function is called to write a byte to the i2c bus in MBS first.
The function caller sends a byte, and in the 9th bit, waits for an ACK or
noACK from the slave. Waiting for an ACK signal is NOT infinite to avoid
program hang-up. Statement 'while((SDA==HIGH)&&(i++<0x80))'
employed for ACK wait with timeout

* Argument: 'c' the byte to send
* Return: ‘ACK’ if the slave acknowledges
* ‘noACK' if the slave didn’t acknowledge
* ACK and noACK public constants defined under iic.h
* WARNING : the type 'bit' is KEIL C specific
* Note: Hardware-dependent for direct I/O operation on SDA and SCL required.

Line (10)

i2c_RcvByte()
unsigned char i2c_RcvByte(void);

* Function: This function is called to read a byte from the i2c bus.
* Argument: none
* Return: The byte read from the i2c bus
* Note: Hardware-dependent for direct I/O operation on SDA and SCL required.

Line (11)

i2c_SeqWr()
bit i2c_SeqWr(unsigned char device, unsigned char addrh, unsigned char addrl, unsigned

char *s, unsigned char length);
* Function: This function is called to sequentially write an array/string of a certain

length to an iic slave. STOP bit is not generated at the end of each byte
except the last byte.

* Argument: 'device' iic device address, e.g. 0xA0 for 24C256 EEPROM, 0xA2 for
PCF8563 RTC, etc

* 'addrh' internal address's high byte, if any. If address is 8-bit only,
* this should be passed NONE defined under iic.h
* 'addrl' internal address's low address byte, always present
* '*s' pointer to the array/string to write
* 'length' length of the array or string to write
* Return: 'noACK' if any of the iic write action returns a bus collision error
* 'ACK' if all of the iic write action successful
* WARNING : the type 'bit' is KEIL C specific
Example:
* s[0] = 0x00; s[1] = 0x10;
* i2c_SeqWr(0xA2, NONE, 0x00, &s[0], 2); //This is to initialize PCF8563 rtc.

AT89S52-gLCD-STK1
Chapter 5 Real time clock by John Leung

 8
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Line (12)

i2c_SeqRd()
bit i2c_SeqRd(unsigned char device, unsigned char addrh, unsigned char addrl, unsigned

char *s, unsigned char length);
* Function: This function is called to sequentially read an array/string of a certain

length from an iic slave.
* Argument: 'device' iic device address, e.g. 0xA0 for 24C256 EEPROM, 0xA2 for

PCF8563 RTC etc
* 'addrh' internal address's high byte, if any. If address is 8-bit only,
* this should be passed NONE defined under iic.h
* 'addrl' internal address's low address byte.
* '*s' pointer to the array/string to read
* 'length' length of the array or string to write
* Return: 'noACK' if any of the iic write action returns a bus collision error
* 'ACK' if all of the iic write action successful
* WARNING: the type 'bit' is KEIL C specific. Array/string passed to *s should be large

enough to hold the total data length.
Example:
 uchar s[3];

 i2c_SeqRd(0xA2, NONE, 0x02, &s[0], 3); to read the sec:min:hour from PCF8563

AT89S52-gLCD-STK1
Chapter 5 Real time clock by John Leung

 9
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Let’s turn to the API functions for the real time clock (RTC). There aren’t a lot of
functions required to read/write to a RTC. Only five API functions have been created.
Listing 5.1.2 shows the pcf8563.h file.

Line (1) & (2) define the VL constants for voltage-low detector flag. PCF8563 has an
on-chip voltage-low detector. When VDD drops below Vlow, bit VL in the seconds register
is set to indicate that the integrity of the clock information is no longer guaranteed. The
VL flag can only be cleared by software. Bit VL is intended to detect the situation when
VDD is decreasing slowly, for example under battery operation. Should VDD reach Vlow
before power is re-asserted then bit VL will be set. This will indicate that the time may
be corrupted.

We make use of these constants in the function rtcGetTime(), see line (8)

Line (3) is a type definition for unsigned char. This one is optional. It is alright to use
unsigned char instead of uchar. The purpose is to shorten typing only.

#ifndef _PCF8563_H_
#define _PCF8563_H_

#define VL_DETECTED 0xFF (1)
#define VL_NDETECTED 1 (2)

#ifndef _uchar_
#define _uchar_
typedef unsigned char uchar; (3)
#endif

void rtcInit(void); (4)
void rtcSetDate(uchar day, uchar dow, uchar month, uchar year); (5)
void rtcSetTime(uchar sec, uchar min, uchar hour); (6)
void rtcGetDate(uchar *date, uchar *dow, uchar *month, uchar *year); (7)
uchar rtcGetTime(uchar *sec, uchar *min, uchar *hour); (8)

#endif

Listing 5.1.2 pcf8563.h header file

Application Interface (RTC)

rtcInit ()
rtcSetDate ()
rtcSetTime ()
rtcGetDate ()
rtcGetTime ()

Hardware dependent
functions

i2c_Start ()
i2c_Stop ()
i2c_Ack ()
i2c_SendByte ()
i2c_RcvByte ()
i2c_SeqWr ()
i2c_SeqRd ()

AT89S52

P1.3 (SDA)
P1.2 (SCL)

Figure 5.1.7 Application Interface for RTC

AT89S52-gLCD-STK1
Chapter 5 Real time clock by John Leung

 10
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Line (4) declares the function prototype for RTC initialization. There are two control
registers at the internal addresses 00h and 01h. Please consult PCF8563 data sheet for
details (extract shown in Figure 5.1.8). The purpose of this function rtcInit(void) is to
configure the chip RTC features as below:

Control/status 1: TEST1 bit=0 (normal mode),

STOP bit=0 (RTC source clock runs)
TESTC bit=0 (normal op)

Control/status 2: AIE bit =0 (alarm interrupt disabled)
TIE bit =0 (timer interrupt disabled)

Line (5) sets the day, weekday, month, and year by writing to registers at 05h to 08h
as shown in Figure 5.1.9.

For example, we want to set the date for 18th June 2006, Sunday, and then we need to
call rtcSetDate(0x18, 0, 0x06, 0x06)

uchar day = 0x18, in BCD format 18th is formatted as the hex number 0x18, with the
high nibble being 1, lower nibble being 8. Suppose we want to set day to be 21st, we
need making day=0x21.

uchar dow = 0 (Sunday=0, Monday=1, Tuesday=2, Wednesday=3,..., Saturday=6).

uchar month = 0x06, in BCD format again. Therefore, June is formatted as 0x06. For
December, month = 0x12, etc. Bit7 ‘C’ of the months/century register indicates century
for year 19xx (bit7=1), and year 20xx (bit7=0).

uchar year = 0x06 for year 2006. This one in BCD format. Therefore, year 2012 would
be formatted as 0x12.

Figure 5.1.9

Figure 5.1.8

AT89S52-gLCD-STK1
Chapter 5 Real time clock by John Leung

 11
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Line (6) sets time by writing to registers at 02h, 03h, and 04h.

For example, if we want to set the current time to 23:59:30, we need to call
rtcSetTime(uchar sec, uchar min, uchar hour) by substitution of parameters as:

sec = 0x30
min = 0x59
hour = 0x23, all in BCD format.

Line (7) declares prototype for date-read function.
Line (8) declares prototype for time-read function. It also returns the VL flag (voltage-
low detector flag) embedded in the seconds register at 02h for detection of when VDD
drops below Vlow.

Example: A primitive example can be found at cd:\src\chp5\src5_1\pcf8563_demo1.uv2.
This program is just to show PCF8563 work. There are many features like alarm and
timer features not utilized yet.

Again, Docklight is used here for program debug. Visualization of the current time is
possible by making the function call:

printf("hour:%bu min:%bu sec:%bu", hour,min,sec); //send hour,min,sec to PC

Similarly, current date is sent to Docklight via the following function call:

printf(" date:%bu Dow:%bu month:%bu year:200%bu\n", date,dow,month,year);
//send date,dow,month,year to PC, formatted by printf function.

Listing 5.1.3 shows the full program.

#include <REGX52.h>
#include "pcf8563.h" (1)
#include “delay.h” (2)
#include <stdio.h> (3)

void main(void)
{
 unsigned char hour, min, sec, date, dow, month, year; (4)

 init_uart(); (5)
 rtcInit(); (6)
 rtcSetTime(0x30,0x59,0x23); (7) rtcSetDate(0x18, 0, 0x06, 0x06); (8)

for(;;)
{
rtcGetTime(&sec, &min, &hour); (9)
printf("hour:%bu min:%bu sec:%bu", hour,min,sec); (10)
rtcGetDate(&date, &dow, &month, &year); (11)
printf(" date:%bu Dow:%bu month:%bu year:200%bu\n", date,dow,month,year); (12)
DelayMs(500); (13)
}

}

Listing 5.1.3 PCF8563 demo program pcf8563_demo1.c

AT89S52-gLCD-STK1
Chapter 5 Real time clock by John Leung

 12
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Line (1) includes the pcf8563.h header file. That is why it is legal to call rtcGetTime(),
rtcSetTime() in our main program.

Line (2) includes software delay functions, like previous examples
Line (3) includes standard library stdio.h provided by Keil C for printf() function
Line (4) declares all variables holding current date/time.
Line (5) initializes UART for RS232 program debug
Line (6) initializes the real time clock
Line (7) & (8) reconcile previous statements concerning date/time adjustment
functions. The purpose of these lines is to set the current date/time to

18th June 2006, Sunday
23:59:30

We only call these codes once in our program; else, we will repeat date/time set-up. A
loophole in this program is that, every time we reset the system, the date/time is set to
18th June ‘06, 23:59:30! If we want to deploy a real-life application, we probably need to
design a user interface for date/time adjustment upon certain menu entry. Alternatively,
we may comment lines (7) & (8), and re-program the chip. Since there is a backup
power from the super-cap (C16), the real time data will be preserved even on main
power removal.

Line (9) simply reads the current time by calling rtcGetTime(). The result is formatted
and printed to PC via Line (10). Similarly, Line (11) reads the date and sends it to PC
(line 12) for debug.

Launch Docklight to view the result. Figure 5.1.10 shows a screenshot of Docklight. Now
we see the clock is alive! Notice the real time jumps from

23:59:59, 18th June 2006, Sunday to 00:00:00, 19th June 2006, Monday

⇒ Chapter 6

Figure 5.1.10 Docklight screenshot for pcf8563_demo1.Uv2

