
AT89S52-gLCD-STK1
Chapter 4 UART & Joystick by John Leung

 1
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Chapter 4 UART & Joystick

4.1 UART: RS232 demo code

There are numerous examples on this topic. A whole chapter on RS232 serial
communication is found inside “Microcontroller Projects in C for the 8051, Dogan
Ibrahim”. Serial communication is also called UART on data sheet of most
microcontrollers, including AT89S52. There is a complete application note on C51 UART
Program Examples on Atmel web page (www.atmel.com) as well.

On AT89S52-gLCD-STK1, U2 is the transceiver to convert TTL levels (0V to +5V) of
AT89S52 to RS232 levels (-12V to +12V) of a PC. It is safe to connect the PC’s COM port
(9-pin male) directly with the female port of our development board by a straight 9-pin
cable.

The source code of this section is found under cd:\src\chp4\src4_1\. Project name is
UART1.uv2.

Line (1) includes the standard library stdio.h header file which is necessary for printf
function in the main loop.

Line (2) configures the serial port control register SCON. Structure of SCON is found in
the 8051 hardware manual published by Atmel. Extract of the table is shown in Figure
4.1.1.

SCON = 0x52 => SM1 = 1, REN = 1, and TI = 1. The rest bits all 0.

#include <REGX52.h>
#include "delay.h"
#include <stdio.h> (1)

unsigned char temperature;
unsigned char humidity;

void uartInit(void)
{
 SCON = 0x52; (2)
 TMOD = TMOD|0x20; (3)
 TH1 = 0xfd; (4)
 TR1 = 1; (5)
}

void main(void)
 {
 uartInit();
 for(;;)
 {
 printf("Temperature : %bu Humidity : %bu \n", temperature++, humidity++); (6)
 DelayMs(1000);
 }
}

Listing 4.1.1

AT89S52-gLCD-STK1
Chapter 4 UART & Joystick by John Leung

 2
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Line (3) configures Timer 1 for 8-bit auto-reload timer mode while leaving Timer 0
unchanged

Line (4) loads TH1 register for a baud rate of 9,600 bps. We don’t need to calculate TH1
value every time we need to change the baud rate. There is a table in the 8051
hardware manual. Figure 4.1.2 shows an extract of that table. We are using a crystal
frequency of 11.0592MHz. When SMOD = 0 (default reset value), we need to load TH1 a
value of FDh for 9,600bps.

Figure 4.1.1

AT89S52-gLCD-STK1
Chapter 4 UART & Joystick by John Leung

 3
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

If a faster baud rate is required, we may set SMOD to 1 by keeping the same value of
TH1 at FDh. The baud rate would be 19,200bps.

SMOD1 is bit 7 of PCON. Therefore we may add the line PCON|=0x80 between line 2 and
line 3 to change the baud rate to 19,200bps.

Line (5) starts Timer 1. This line is important; else, UART doesn’t work.

Line (6) prints the value of temperature and humidity (dummy variables yet) via pin P3.3
of the AT89S52 mcu. Because we have initialized the hardware UART by calling uartInit(),
no explicit definition of the P3.3 is required. Data is transmitted from this pin, and its
voltage levels converted by the MAX232 transceiver (integrated circuits U2) to levels
accepted by the PC. The result should be received and interpreted by a serial data
analysis software.

Figure 4.1.2 Extract from page 99 of Atmel 8051 Microcontrollers Hardware Manual

AT89S52-gLCD-STK1
Chapter 4 UART & Joystick by John Leung

 4
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Docklight is a test, analysis and simulation tool for serial communication protocols
(RS232, RS485/422 and others). Its evaluation version can be downloaded from
www.docklight.de. Download a copy from the web site and get it installed. Launching
Docklight you will see the following screen (Figure 4.1.3). Click OK to skip the startup
screen.

 Figure 4.1.3 Startup screen

AT89S52-gLCD-STK1
Chapter 4 UART & Joystick by John Leung

 5
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Start with a blank project, click Continue.

This is an important step. Under Tools->Project Settings to bring up the Project
Settings dialog box. Select
the COM port you use on
the PC, and a Baud Rate of
9600 under the COM Port
Settings.

Figure 4.1.4

Figure 4.1.5

AT89S52-gLCD-STK1
Chapter 4 UART & Joystick by John Leung

 6
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Finally, click on the Play icon to start communication.

After having downloaded the hex code UART1.hex under cd:\src\chp4\src4_1\ to the
mcu, you will see dummy data as shown below. We have a handy tool to debug a
program now.

Figure 4.1.6

Figure 4.1.7

AT89S52-gLCD-STK1
Chapter 4 UART & Joystick by John Leung

 7
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

4.2 Joystick: Let’s debug the driver of 5-way navigator joystick

It is very important to be able to debug a program during software development. Unlike
the PC counterpart, there is no monitor for small microcontrollers. Serial data analysis
software like Docklight allows us to keep track of our program flow by using technique
similar to what we have done in section 4.1. There is a better alternative of course.
Emulator is a common technique but it requires extra hardware. So, we would
concentrate on using Docklight for debug at the moment.

Program in this section monitors joystick S1 for key press. It is a 5-way navigator
joystick in the sense that, it is possible to click it up, down, right, left, and center. Its
position is highlighted in Figure 4.2.1. Its simplified wiring diagram is shown in Figure
4.2.2. The actual schematic is more complicated though, but the idea behind is the same.
Please refer to the full schematic for details.

Figure 4.2.1

Up

Down

Right Left
Center

 P1.5

 P1.6

 P1.7
 P3.3

 P1.4

Figure 4.2.2 Remarks: keys’ pins short to ground to read 0 when pressed

AT89S52-gLCD-STK1
Chapter 4 UART & Joystick by John Leung

 8
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Again, there are many references from the internet on this topic. However, the best
keyboard/keypad driver I’ve seen is from Jean J. Labrosse’s book, Embedded System
Building Blocks, 2nd edition.

The keypad module presented on Jean’s book concentrates on matrix keyboard. The
following features are available1:

• Scan any keyboard arrangement from 3x3 to an 8x8 key matrix
• Provides buffering with user configurable buffer size
• Supports auto-repeat
• Keeps track of how long a key has been pressed
• Allows up to three Shift keys

Because our navigator joystick has been wired in direct I/O configuration, a simplified
version would be presented here with the following features for the sack of a smaller
module to fit in 2K limit of eval Keil C:

• Scan individual switch
• Provides buffering with user configuration buffer size
• Supports auto-repeat
• Keeps track of how long a key has been pressed

The source code of this program is found under cd:\src\chp4\src4_2\. The project name
is keyMON.uv2.

Joystick functions have been included in form of a software module. This is similar to
software module provided by delay.c, however, the module xKey.c is much more
complicated.

Listing 4.2.1 shows the xKey.h file. It would be enough for us to make use of all
functions provided by the xKey.c module by just learning the constants and function
prototypes (Application Interface) defined under xKey.h instead of going through the
details of xKey.c.

Module flow diagram is shown in Figure 4.2.3.

1 Chapter 3, Keyboards, Embedded System Building Blocks, 2nd edition, by Jean J. Labrosse

Application Interface

xKEY_DN_FLAG
…
…

xKeyScanTask()
xKeyInit()
xKeyHit()
xKeyGetKey()
xKeyGetKeyDownTime()

Up

Down

Right Left
Center

Hardware dependent
functions

sbit xKEY_DN…
…

xKeyInitPins()
xKeyCheckPins()
xKeyDecode()

Figure 4.2.3

AT89S52-gLCD-STK1
Chapter 4 UART & Joystick by John Leung

 9
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

/* Hardware pins suit AT89S52-gLCD-STK1 board */
sbit xKEY_DN = P1^4; (1)
sbit xKEY_RT = P1^5; (2)
sbit xKEY_LT = P1^7; (3)
sbit xKEY_UP = P1^6; (4)
sbit xKEY_CTR = P3^3; (5)

/* General definition */
#define FALSE 0 (6)
#define TRUE 1 (7)

/* Key definitions */
#define xKEY_DN_FLAG 1 (8)
#define xKEY_RT_FLAG 2 (9)
#define xKEY_LT_FLAG 3 (10)
#define xKEY_UP_FLAG 4 (11)
#define xKEY_CTR_FLAG 5 (12)

/* Buffer size, delay constants etc. (see text) */
#define xKEY_BUF_SIZE 3 (13)
#define xKEY_RPT_DLY 5 (14)
#define xKEY_RPT_START_DLY 30 (15)
#define xKEY_SCAN_TASK_DLY 50 (16)

/* extern definition */
#ifdef xKEY_GLOBALS (17)
#define xKEY_EXT (18)
#else
#define xKEY_EXT extern (19)
#endif

/* Auto-repeat enable bit */
xKEY_EXT bit xKeyRptEn; (20)

/* API functions */
void xKeyScanTask(void); (21)
void xKeyInit(void); (22)
bit xKeyHit(void); (23)
unsigned char xKeyGetKey (void); (24)
unsigned int xKeyGetKeyDownTime(void); (25)

/* Hardware dependent functions */
void xKeyInitPins(void); (26)
bit xKeyCheckPins(void); (27)
unsigned char xKeyDecode(void); (28)

Listing 4.2.1 xKey.h file

AT89S52-gLCD-STK1
Chapter 4 UART & Joystick by John Leung

 10
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Line (1) – (5) provides hardware definition matching the development board. Caution:
the type ‘sbit’ is specific to Keil C only. Other compilers may not use the same definition.

Line (6) & (7) defines the keyword FALSE and TRUE for portability.

Line (8) – (12) defines arbitrary constants for individual key. Constant xKEY_DN_FLAG
(say), would be used in the main() program for detection of the DOWN key press.

Line (13) defines the buffer size of the Joystick buffer. A cyclic buffer is implemented
inside xKey.c. The direct consequence of using a buffer is that, it is possible to postpone
reading the Joystick without losing keystrokes if there is/are more important tasks to be
handled by the microcontroller. The size of the buffer depends on the application
requirement. For our simple demonstration, a buffer size of 3 is good enough. It is
possible to assign a large buffer of 50; unfortunately, key buffer is occupying RAM space
so it fights for RAM resources with other tasks as well.

Figure 4.2.4a shows the data RAM used after setting xKEY_BUF_SIZE 80.
Figure 4.2.4b shows the RAM used with xKEY_BUF_SIZE 3.

Line (14) defines the number of scan times before auto-repeat executes again, i.e. it is
the rate of auto-repeat. Scan time measured in units of xKEY_SCAN_TASK_DLY defined
in Line (16).

Therefore, the actual time for auto-repeat in our case is 250 ms.

xKEY_RPT_DLY * xKEY_SCAN_TASK_DLY ms, which is 5*50ms

Figure 4.2.4a

Figure 4.2.4b

AT89S52-gLCD-STK1
Chapter 4 UART & Joystick by John Leung

 11
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Line (15) defines the number of scan times before auto-repeat function started. Again,
its unit is measured in xKEY_SCAN_TASK_DLY.

Line (16) is the number of milliseconds between keyboard scans. It is an important
parameter for key debounce. We need debounce because switches are not perfect. They
do not generate a clear-cut 1 or 0 when they are pressed or released. A normal person
presses a key longer than 20ms, so a key debounce delay of 50ms is usually good
enough.

Line (17) - (19) takes care of extern keyword for xKey.c and the application program.
If we need a global variable that would be accessed by the application program, we need
to prefix the variable with xKEY_EXT, like the case in xKeyRptEn.

Line (20) defines a global variable for enable/disable the auto-repeat feature. This is a
Keil C specific variable as it is using the type ‘bit’. xKeyRptEn defaults to FALSE on
xKeyInit(), module initialization.

Here come the API functions:

Line (21)

xKeyScanTask()
void xKeyScanTask(void);

This is a direct modification from the original KeyScanTask(void *data) created by Jean J.
Labrosse in his book Embedded System Building Blocks, 2nd edition. Because we do not
have RTOS yet, this function has been made public, and the function OSTimeDlyHMSM()
in the original version has also been removed.

This function is the heart of the keyboard module. It should be called in a periodic
manner with the rate defined by xKEY_SCAN_TASK_DLY. In this case, key debounce is
taken care of during the xKEY_SCAN_TASK_DLY period. The principle is illustrated in
Figure 4.2.5. Suppose at any time to , the key UP is clicked, after some time (max 50ms
defined by xKEY_SCAN_TASK_DLY), xKeyScanTask() would be called for the first time.
xKeyScanTask() would record the state of the key and just exit. A normal key press
would last longer than 50 ms. When xKeyScanTask() is called the second time, algorithm
inside xKeyScanTask() will decide if that key is still pressed. If “yes”, the key code would
be decoded and placed inside the Joystick buffer for future read; otherwise, no key code
would be inserted as it must have been noise or not a real key stroke. It has been
assumed that no key bounce will last longer than 50ms! If you’ve got a key like that, just
through it away.
Example : Please refer to listing 4.2.2

Key click at time to

xKeyScanTask() called the second time

max 50ms

+5V

Figure 4.2.5 Key Debounce (drawing not to scale, key bounce should be short)

xKeyScanTask() called the first time

AT89S52-gLCD-STK1
Chapter 4 UART & Joystick by John Leung

 12
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Line (22)

xKeyInit()
void xKeyInit(void);

xKeyInit() is the initialization code for the module. It must be called before using any of
the other functions. xKeyInit() is responsible for initializing internal variables used by the
module and hardware ports as well.
Example : Please refer to listing 4.2.2

Line (23)

xKeyHit()
bit xKeyHit(void);

xKeyHit() allows your application to determine if a key has been pressed. It return TRUE
if a key was pressed, and FALSE otherwise.

Arguments: none
Return Value: TRUE or FALSE

Warnings: The return value type ‘bit’ is Keil C specific

Example : Please refer to listing 4.2.2

Line (24)

xKeyGetKey()
unsigned char xKeyGetKey(void);

xKeyGetKey() is called by the application to obtain a scan code from the Joystick buffer,
in our case, scan code has been defined by:

/* Key definitions */
#define xKEY_DN_FLAG 1
#define xKEY_RT_FLAG 2
#define xKEY_LT_FLAG 3
#define xKEY_UP_FLAG 4
#define xKEY_CTR_FLAG 5

Arguments: none
Return Value: xKEY_XX_FLAG, or 0xFF if there is an error

Warnings: This function should be called frequent enough before key buffer overflow.

Example : Please refer to listing 4.2.2

Line (25)

xKeyGetDownTime()
unsigned int xKeyGetDownTime(void);

xKeyGetKeyDownTime() returns the amount of time (in msec) that a key has been
pressed.

Arguments: none
Return Value: The amount of time that the current key is being pressed.

Warnings: The key down time is not cleared when the pressed key is released

Example: please request if an example is required.

AT89S52-gLCD-STK1
Chapter 4 UART & Joystick by John Leung

 13
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Line (26) – (28) are hardware dependent functions. They are not explicitly called in
user application. Please refer to the source code for details.

Listing 4.2.2 shows the demonstration application.

#include <REGX52.h>
#include "xKey.h"
#include "delay.h"
#include <stdio.h>

sbit LED = P2^0;

/* UART Initialization */
void uartInit(void)
{

SCON = 0x52; //UART in 8 bit mode
TMOD = TMOD|0x20; //Timer 1 configured for 8-bit auto-reload timer mode,

//Timer 0 unchanged
 TH1 = 0xfd; //TH1 value for a baud rate 9600bps
 TR1 = 1; //Timer 1 is turned ON
}

/* Main */
void main (void){

 unsigned char keyCode;

 xKeyInit();
 uartInit();

 for(;;){
 DelayMs(xKEY_SCAN_TASK_DLY); //software delay for key debounce
 xKeyScanTask(); //Key scan
 if(xKeyHit())
 {
 keyCode = xKeyGetKey();
 switch (keyCode)
 {

case xKEY_UP_FLAG:
xKeyRptEn=TRUE;
printf("Key Up Pressed \n");

 break;
 case xKEY_DN_FLAG:

xKeyRptEn=TRUE;
printf("Key Down Pressed \n");

 break;
 case xKEY_RT_FLAG:

xKeyRptEn=FALSE;
printf("Key Right Pressed \n");

 break;
 case xKEY_LT_FLAG:

xKeyRptEn=FALSE;
printf("Key Left Pressed \n");

 break;
 case xKEY_CTR_FLAG:

xKeyRptEn=FALSE;
printf("Key Center Pressed \n");

 break;
 default: ;//inform user of an error, optional
 }
 }
 LED = ~LED;
 }
}

Listing 4.2.2 5-way navigator joystick demonstration program

AT89S52-gLCD-STK1
Chapter 4 UART & Joystick by John Leung

 14
© 2006 TechToys Co.
www.TechToys.com.hk
All Rights Reserved

(Revision a)

Program on listing 4.2.2 checks for any key press on S1 (5-way navigator joystick). Key
debounce achieved by simple software delay function DelayMs(xKEY_SCAN_TASK_DLY)2.
If key UP or DOWN pressed, the corresponding text message is transmitted via UART for
debug purpose. Auto-repeat feature is enabled with UP/DOWN, so holding these keys
would repeat sending text messages. Similarly, text messages debug feature included for
keys RIGHT, LEFT, and CENTRE, with auto-repeat disabled. At the same time, an LED is
blinked at a rate of 1/50ms (20Hz) to show the software loop is running under the
extreme conditions of a key hold. Baud rate is 9600bps, Timer 1 is used as the baud rate
generator. Standard library stdio.h is also included for printf function. Code size is 1664
bytes if printf is used; else, the code is around 494 bytes.

Launch Docklight to see the result as below (Figure 4.2.6). Try clicking S1 up, down,
right, etc. Hold keys UP/DOWN and get a feeling of the auto-repeat feature. Now we
know our xKey.c driver is at least working.

⇒ Chapter 5

2 Timer interrupt should be used for more serious applications

Figure 4.2.6

