

Description	7" TFT LCD Module with Touch Panel retrofit
Model Name	TY700TFT800480
Product Revision	03
Date	9th Jan 2015
Doc. Number	TY700TFT800480 Rev03
Doc. Revision	03

TechToys Company Unit 12, 9/F Block B, Sun Fung Centre, 88 Kwok Shui Road, Tsuen Wan, Hong Kong Tel: 852-28576267 Fax: 852-28576216 Web site: <u>www.TechToys.com.hk</u>

Interface with new 4-wire resistive Touch Panel retrofit

	I PIN Definition				
Pin No.	Symbol	Description Rema			
1	LED-K	LED backlight (Cathode)			
2	LED-A	LED backlight (Anode)			
3	GND	Ground			
4	V _{cc}	Power Supply for Digital Circuit (+3.0V)			
5-12	R0-R7	Red Data			
13-20	G0-G7	Green Data			
21-28	B0-B7	Blue Data			
29	GND	Ground			
30	CLK	Clock (Latch data at CLK falling edge)			
31	DISP	Display On/Off			
32	HSYNC	Horizontal sync input in RGB mode			
33	VSYNC	Vertical sync input in RGB mode			
34	DEN	Data Enable			
35	NC	Not connected			
36	GND	Ground			
37	YU	Touch panel at Y-up			
38	XR	Touch panel at X-right			
39	YD	Touch panel at Y-down			
40	XL	Touch panel at X-left			

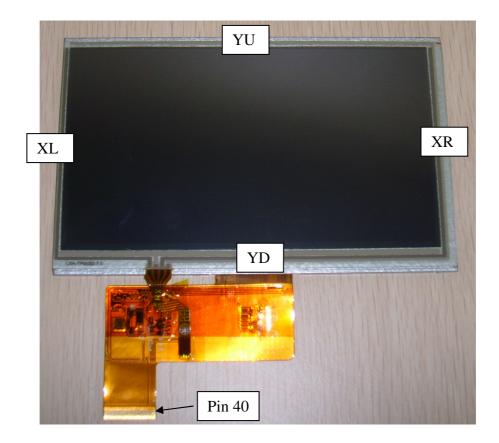
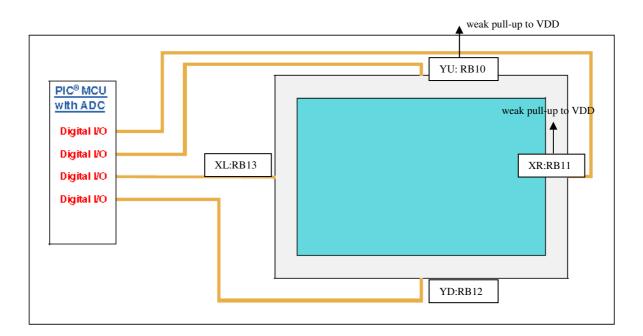
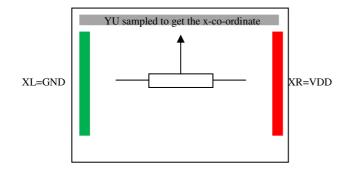



Table below shows the change in pin assignment.

Original	YU	XL	YD	XR
New	XL	YD	XR	YU

This is how connection is made with our SSD1963 Ultima Board when a Microchip Ethernet Starter Kit is stacked on it.

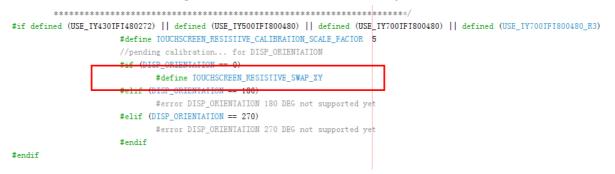


Resistive touch panel works like a potential divider. Measuring a touch position is actually to measure the voltage at XR and YU when a DC voltage applied in the direction YU(+ve)-YD(-ve) and XR(+ve)-XL(-ve), respectively.

The y-coordinate is found by measuring ADC value of XR when YU energized to VDD and YD pulled GND. Weak pull-up at XR is necessary to return a known state when no touch action is pressed.

Similarly, the x-coordinate is found by measuring YU when XR energized to VDD and XL pulled to GND with illustration shown below.

Firmware changes are merely pinout definitions in hardware profile. Example below shows an extract from the header file HWP_PIC32_ETH_SK_SSD1963_ULTIMA_R4_16PMP.h.


This file is located in the firmware folder ..\Graphics\ObjectLayer\Configs.

Convention in the source code is shown below.

Resistive wire	Definition	Pin assignment
YU	ADC_YPOS	RB10 (AN10)
XR	ADC_XPOS	RB11(AN11)
YD	LAT_YNEG	RB12 (digital GPIO)
XL	LAT_XNEG	RB13 (digital GPIO)

Start P	age × 🖭 SSD 1963.c × 🖭 HWP_PIC32_ETH_SK_SSD 1963_ULTIMA_R4_16PMP.h ×
	◎ • ◎ • 즉 즉 구 문 음 일 일 ● □ ≝ 말
492	1. X+ and Y+ are mapped to the A/D inputs
493	2. X- and Y- are mapped to the pure digital I/Os
494	- */
495	#if defined (USE_IOUCHSCREEN_RESISTIVE)
496	#define IOUCH_ADC_INPUI_SEL AD1CHS
497	// ADC Sample Start
498	#define TOUCH_ADC_STARI AD1CON1bits.SAMP
499	// ADC Status
500	#define TOUCH_ADC_DONE AD1CON1bits.DONE
501	//Sampling for a IP retrofit
502	#define ADC_YPOS ADC_CH0_POS_SAMPLEA_AN10
503	#define ADC_XPOS ADC_CH0_POS_SAMPLEA_AN11
504	// X port definitions
505	#define ADPCFG_YPOS AD1PCFGbits.PCFG10
506	#define LAI_YPOS LAIBbits.LAIB10
507	#define LAI_YNEG LAIBbits.LAIB12
508	#define IRIS_YPOS IRISBbits.IRISB10
509	#define IRIS_YNEG IRISBbits.IRISB12
510	// Y port definitions
511	#define ADPCFG_XPOS AD1PCFGbits.PCFG11
512	#define LAI_XPOS LAIBbits.LAIB11
513	#define LAT_XNEG LAIBbits.LAIB13
514	#define IRIS_XPOS IRISBbits.IRISB11
515	#define IRIS_XNEG IRISBbits.IRISB13

The next step is to make sure the condition to swap x-y sampling is defined because we are measuring x-coordinate with Y-POS and y-coordinate with X-POS.

Finally, reset the system with the screen touched and held for calibration.

Hey new Touch Banel is here!

Here we have a new Touch Screen.