

Pixel clock setup for Solomon SSD1963 Display Controller

Introduction

This document explains how to configure different pixel clock speed for Solomon SSD1963 Display Controller IC

Hardware

List of components:

- SSD1963 Evaluation Kit Ultima Rev4.1
- Microchip PIC32 USB Start Kit
- 7" WVGA 800x480 TFT screen
- The workstation for development is a Pentium PC Dual Core E2160 running Windows XP SP3

Software

The demo application was developed under Microchip MPLAB version 8.83 with C32 compiler v2.20. Source code is available from our web site in the main page of SSD1963 EVK Ultima R4.1 at Doc04

(http://www.techtoys.com.hk/Displays/Solomon%20SSD1963%20EVK%20R4_1/SSD1 963%20EVK%20Ultima%20R4_1.htm)

12			Documen	t & Soft	ware
the second second					
	Doc 01	Schematic of SSD1963 controller board	100 KB	1	
	Doc 02	Schematic of 8-bit MCU host board	35 KB	7	
ST ALL AND AND	Doc 03	Schematic of TFT adapter	13 KB		
1 Stall	Doc 04	Firmware (Rev 24092012) includes:	21,571 KB		Q
		* External Memory Demo			
		* MP3/WAV/MIDI playback from SD Card			
0		* Decode & display JPEG from SD Card			
The second second		* GUI with Resistive Touch Panel			
Click to enlarge		* Primitive Graphics			

Figure 1 Location of source code

The project for this note is located at the directory ..\Graphics\Primitive Layer. There are three MCU variants PIC32MX360F512L, PIC32MX460F512L, & PIC32MX795F512L available. It is PIC32MX460F512L on PIC32 USB Starter Kit.

The options as shown in Figure 2(*HardwareProfile.h*)were chosen for our particular hardware combination.

D:\Pr	ojects\PIC32STK_SSD1963\Firmware\MCHP_2	011_07_14\Graphics\Primitive Layer\HardwareProfile.h				
63	/*					
64	**************************************					
65	*****					
66	* Directives PIC32 GP SK / PIC32 USB SK / PIC32 ETH SK / EXPLORER 16 / PIC32MX360F512L EVK RD5B					
67	* defines what mcu host to use.					
68	* It is possible to stack any of the PIC32 starter kits or just using Explorer 16 as the host.					
69	* This version assumes PIC32MX360F512L on Explorer 16, however, it is not a strict requirement.					
70	* New driver can be developed with diff	* New driver can be developed with different MCU by following the schematic.				
71	***************************************					
72	*/					
73						
74	//#define PIC32_GP_SK	//PIC32 GP STARTER KIT				
75	#define PIC32_USB_SK	//PIC32 USB STARTER KIT				
76	//#define PIC32_ETH_SK	//PIC32 ETHERNET STARTER KIT				
77	//#define EXPLORER_16	//Explorer 16 connected				
78	//#define PIC32MX360F512L_EVK_RD5B	//TechToys PIC24/32 EVK RD5B with PIC32MX360F512L onboard				
79	//#define PIC32_EVK_RD4	//TechToys PIC32 EVK RD4 board				
80						
81	/*					
82	**************************************	the display controller ***********************************				
83	***************************************	****				
84	*/					
85	#define ULTIMA_R4_BOARD	//Display controller SSD1963 EVK Ultima R4.1				
86	//#define USE_DISPLAY_CONTROLLER_SSD196	3_R3B				
87						
88	/*					
89	**************************************					
90	***************************************	***************************************				
91	*/					
92	//#define USE_TY430TFT480272	//TFT panel is 4.3" 480x272 display panel				
93	//#define USE_TY500TFT800480	//5" TFT 800x480				
94	//#define USE_TY600TFT800480	//6" TFT 800x480				
95	//#define USE_TY700TFT800480	//7" TFT 800x480				
96	B#define USE_TY700TFT800480_R3	//7" TFT 800480 Rev3.0				
197 🕓						

Figure 2 Options in HardwareProfile.h

From the project workspace, open the file SSD1963.c.

Browse to ResetDevice(void).

1. It is important to notice that, before the SSD1963 is configured to run at any higher speed, it is running at 10MHz which is exactly the crystal frequency in hardware. Therefore, it is not possible to write to SSD1963 at any speed higher than 10MHz before the PLL is locked. That's why the function WriteDataSlow() is used to match the speed of 10MHz. Figure 3 shows an extract from the source code SSD1963.c.

1062					
1063	RST_LAT_BIT = 0;				
1064	DelaylOus(10);				
1065	RST_LAT_BIT = 1; // release from reset state to sleep state				
1066	DelaylOus(10); // This delay time is very important, else, CMD_SET_PLL MN command won't work!				
1067					
1068	//Set MN(multipliers) of PLL, VCO =	crystal freq * (M+1)			
1069	//PLL freq = VCO/(N+1) with 250MHz < VCO < 800MHz, PLL frequency <110MHz				
1070	<pre>WriteCommandSlow(CMD_SET_PLL_MN);</pre>	// Set PLL with OSC = 10MHz (hardware)			
1071		// Multiplier M = 35, VCO (>250MHz)= OSC*(M+1), VCO = 360MHz			
1072	WriteDataSlow(35);				
1073	WriteDataSlow(2);	// Divider N = 2, PLL = 360/(N+1) = 120MHz			
1074	WriteDataSlow(0x54);	// Validate M and N values			
1075					
1076	<pre>WriteCommandSlow(CMD_PLL_START);</pre>	// Start PLL command			
1077	WriteDataSlow(0x01);	// enable PLL			
1078					
1079	DelaylOus(10);	// wait stablize for 100us			
1080					
1081	<pre>WriteCommandSlow(CMD_PLL_START);</pre>	// Start PLL command again			
1082	WriteDataSlow(0x03);	// now, use PLL output as system clock			
1083					
1084	WriteCommandSlow(CMD_SOFT_RESET);	// Soft reset. All configuration register reset except 0xE0 to 0xE5			
1085	DelayMs(5);				
1086					
1087	#ifdef USE_16BIT_PMP				
1088	PMMODEbits.MODE16 = 1; // 16 bit m	ode			
1089	#else				
1090	PMMODEbits.MODE16 = 0; // 8 bit mode				
1091	-#endif				
1092	//once PLL locked (at 110MHz), the data hold time set shortest PMP setup				
1093	PMMODEbits.WAITE = 0;				
1094	PMMODEbits.WAITM = 0;				
1095	PMMUDEbits.WAITE = 0;				
IIINGE					
Figure 3	3 An extract from SSD1963.c in ResetD	evice(void)			

After PLL has been locked at 120MHz, we may use a higher writing speed. For Microchip PIC32, it is possible to set PMP waiting periods at the lowest values.

OK, now we have a SSD1963 running at 120MHz.

The pixel clock is divided from the master clock with divisors at register LCDC_FPR. Down the function ResetDevice(void) you may see the configuration for 5" or 7" TFT panels as below (Figure 4).

```
1117
1118
              1119
              * 5.0" TFT panel model # TY500TFT800480
 1120
              *****
              */
 1121
         #elif defined (USE_TY500TFT800480)|| defined (USE_TY700TFT800480_R3)
//Set LSHIFT freq, i.e. the DCLK with PLL freq l20MHz set previously
//Typical DCLK for TY500TFT800480 is 33MHz
 1122
 1123
 1124
 1125
              //30MHz = 120MHz*(LCDC_FPR+1)/2^20
1126
1127
1128
              //LCDC_FPR = 262143 (0x3FFFF)
              WriteCommand(CMD_SET_PCLK);
              CS_LAT_BIT = 0;
 1129
              //WriteData(0x03);
1130
1131
              //WriteData(Oxff);
              //WriteData(Oxff);
 1132
              WriteData(0x05);
 1133
              WriteData(0x55);
 1134
              WriteData(0x54);
1135
              CS_LAT_BIT = 1;
Figure 4 Register LCDC_FPR for PCLK speed
```

The equation to obtain LCDC_FPR is:

PCLK = Master Clock * (LCDC_FPR+1)/2^20.

If we need a PCLK at 40MHz, the value of LCDC_FPR is calculated as:

LCDC_FPR = $2^{20*40}/120 - 1$

= 349524 (0x55554).

Similar, the value of LCDC_FPR for PCLK@30MHz $= 2^{20*30}/120 - 1$

= 262143 (0x3FFFF)

Tek .n., Acq Complete M Pos: 0.000s SAVE/REC Action WriteCommand(CMD_SET_PCLK); Save Image CS_LAT_BIT = 0; File Format JPEG WriteData(0x05); About Saving WriteData(0x55); Images Select WriteData(0x54); Folder CS_LAT_BIT = 1; Save TEK0000.JPG CH1 2.00V CH1 / 1.92V M 10.0ns 40.0010MHz 11-Dec-12 18:30

Figures below show the waveform of PCLK output from SSD1963.

This page is empty